
Kodama time

Kodama time

Gabriel Abreu
Matt Visser

School of Mathematics, Statistics and Operation Research,
Victoria University of Wellington, New Zealand.

December 16, 2009



Kodama time

Abstract

In a general (3+1)-dimensional spherically symmetric
spacetime, a preferred time coordinate is introduced by
applying the Clebsch decomposition theorem to the Kodama
vector. Then a preferred coordinate system is constructed for
the time-dependent metric tensor. However, certain
ambiguities arise when the time-dependent metric is studied,
such as the time-dependent redshift factor, and the
time-dependent surface gravity. Nevertheless, by building a set
of radial null geodesics, it is possible to define and calculate a
notion of bulk gravity that generalizes the usual surface gravity
and is valid throughout the entire spacetime geometry.
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Introduction

The Schwarzchild solution

The Schwarzchild metric

The first non-trivial solution of the GR vacuum equations is given
by the Schwarzchild metric [1]

ds2 = −
(

1− 2 M

r

)
dt2 +

(
1− 2 M

r

)−1

dr 2 + r 2dΩ2.

Birkhoff’s theorem assures the Schwarzchild metric is the only
vacuum solution with spherical symmetry. Specifically there
are no time-dependent solutions of this form.

Although it seems to be a singularity at 2 M = r , a coordinate
change shows the real singularity is at r = 0.

Moreover, using different coordinate systems it is possible to
study different aspects of the Schwarzchild solution.
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The Schwarzchild solution

Schwarzchild black holes

Three important aspects of such black holes are,

The redshift factor: It is given by the gtt component of the
metric,

1 + z =

√
1− 2 M

r
.

The event horizon: Is the spacelike surface where the Killing
vector becomes null. It is located at

r = 2 M.

Event horizons can not be detected locally.
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The Schwarzchild solution

The surface gravity: It is the gravitational acceleration of a
stationary observer near the horizon, as seen at infinity. For
this metric it is

κ =
1

4M
.

These three factors depend on the notion of Killing vector.
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The Schwarzchild solution

Static black holes are not the full story.

Black holes evolve until they reach an equilibrium between
accretion and Hawking radiation.
Unfortunately, there are not many solutions of the Einstein
equations for a time-dependent metric.
There is no time-like Killing vector for time-dependent
spherically symmetric metrics.
This leaves notions ( like the surface gravity, redshift factor
and event horizon ) which depend strongly on the existence of
a Killing vector field, rather unclear.

It’s not all bad news.

Event horizons are not necessary to have Hawking radiation.
There are other ways to obtain a notion of surface gravity.
Such as using the Kodama vector as some sort of substitute
for the Killing vector [2], or through the bulk gravity.
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The Kodama miracle

Kodama vector

With spherical symmetry we have,

The time-dependent metric:

ds2 = gij(x) dx idx j + r(x)2dΩ2.

Kodama proved [3] that the vector:

ka = εab⊥ ∇br .

is divergence free.

Furthermore, Kodama’s conservation law:

∇aSa = ∇a(kb G ab) = 0.
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Standard form of the metric

Kodama’s conservation law gives us an insight on the problem in
spherical symmetry. Specifically,

The Kodama vector can be decomposed as,

k[ = α dβ → k[ = F dt.

Suggesting,

A natural time coordinate t, which allows us to write the
metric as,

ds2 = gtt dt2 + 2gtr dr dt + grr dr 2 + r 2dΩ2.

And, since the Kodama vector is orthogonal to dr ,

ds2 = gtt dt2 + grr dr 2 + r 2dΩ2.
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Standard form of the metric

Finally, without loss of generality, we can write the metric as

ds2 = −e−2Φ(r ,t)

(
1− 2m(r , t)

r

)
dt2 +

dr 2

1− 2m(r , t)/r
+ r 2dΩ2.

For this coordinate system, we have

1 The Kodama vector is ka = eΦ(1, 0, 0, 0).

2 The time translation vector T , does not coincide with the
Kodama vector. In fact

e−2Φ(r ,t) =
||T ||2

||k ||2
.

This expression allows us to foresee the ambiguity of the
notion of surface gravity, for the dynamic case.
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Standard form of the metric

Kodama’s generalized conservation law

Additionally, with these coordinates it is clear that Kodama’s
conserved current implies,

∇aSa =
2

e−Φr 2
∂a

(
−m′, ṁ; 0, 0

)a
=

2

e−Φr 2
[−ṁ′ + ṁ′] = 0.

Therefore, using the abstract definition of the Kodama vector, it
can be proved the existence of an extra conserved quantity,

∇a

(
εab⊥
r 2

)
≡ 0.

Both conservation laws can be written in the statement,

Sa
new =

εab⊥
r 2
∇bΨ.
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Bulk gravity

Dynamic surface gravity

The ambiguous surface gravity

Two ways of calculating the surface gravity [1],

1 Using the Killing vector: κ2
s = −1

2 (∇aχb)(∇aχb).

2 Through the four-acceleration,

a =
√

ab ab =

√
1− 2m(t, r)

r

Φ′(t, r)

r 2

+
m′(t, r)

r
√

1− 2m(t,r)
r

− m

r 2

√
1− 2m(t,r)

r

.

Both methods have problems when we study time-dependent
geometries.
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Bulk gravity

Bulk gravity

Alternatively, we can calculate the gravity throughout the whole
spacetime, i.e. the bulk gravity. Consider the following null
geodesics,

`a =
ka +∇ar

eΦ(t,r)
, na =

ka −∇ar

eΦ(t,r)
.

With, `ana = 2 e−2Φ(t,r)||k ||2. They satisfy the geodesic equations,

`b∇b`
a = κ` `

a , nb∇bna = κn na.

From above we get, κn + κ` = −2 Φ̇(t, r), and

κ` =

(
2 m(t, r)

r 2
− 2 m′(t, r)

r

)
e−Φ(t,r)

− 2

(
1− 2 m(t, r)

r

)
Φ′(t, r) e−Φ(t,r) − Φ̇(t, r).
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Bulk gravity

Bulk gravity

Furthermore, this notion of gravitational acceleration is finite at
2 m(t, rH) = rH ,

κH =
1− 2 m′(t, rH)

rH(t)
e−Φ(t,rH) − Φ̇(t, rH).

And, it coincides with the surface gravity in the static case.
However, we have the freedom to normalize the null geodesics
differently.

With a different normalization the bulk gravity changes.

The choice of normalization is quite arbitrary.
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The horizon

Trapping horizon

Although it is local, a trapping horizon [4] [5] guarantees Hawking
radiation. To have a trapping horizon, the expansion of the null
geodesics has to satisfy, at rH = 2 m(t, rH)

1

θ` = 0.

2

θn < 0.

3

na∇aθ` < 0.
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The horizon

Let us use the following definition for the expansion [6] of the
outward radial null geodesic,

θ` = ∇a`
a − κ`,

and of the inward radial null geodesic,

θn = ∇ana − κn.

To obtain

θ` =
2

r

(
1− 2 m(t, r)

r

)
e−Φ(t,r).

and θn = −θ`. Also,

(na∇a θ`)rH
= −4 ṁ(t, rH)

r 2
H

eΦ(t,r).
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Discussion

We introduced a time coordinate parallel to the Kodama
vector; the Kodama time.

Then we constructed a coordinate system, for which:

1 The outward and inward null geodesic gave us the notion of
bulk gravity, which is valid through the whole geometry
(except at r = 0).

2 We have an apparent horizon at

rH = 2 m(t, rH).

3 We have a trapping horizon, rH , if

ṁ(t, rH) ≥ 0.

However, the freedom of normalization of the null geodesics
produces an ambiguity on the notion of bulk gravity, and
surface gravity. Nevertheless the horizon is still a trapping one.
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Discussion

What’s next?

Face the fact we have too much freedom!

Work on the definition of quasi-local mass for this system of
coordinates.

Get a quasi-local notion of entropy.
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