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Abstract

In a general (3+1)-dimensional spherically symmetric
spacetime, a preferred time coordinate is introduced by
applying the Clebsch decomposition theorem to the Kodama
vector. Then a preferred coordinate system is constructed for
the time-dependent metric tensor. However, certain
ambiguities arise when the time-dependent metric is studied,
such as the time-dependent redshift factor, and the
time-dependent surface gravity. Nevertheless, by building a set
of radial null geodesics, it is possible to define and calculate a
notion of bulk gravity that generalizes the usual surface gravity
and is valid throughout the entire spacetime geometry.
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The Schwarzchild metric

The first non-trivial solution of the GR vacuum equations is given
by the Schwarzchild metric [1]

—il
ds? = — (1 — ﬁ) de? + (1 _ ¥> dr? + r?dQ?.

m Birkhoff’s theorem assures the Schwarzchild metric is the only
vacuum solution with spherical symmetry. Specifically there
are no time-dependent solutions of this form.

m Although it seems to be a singularity at 2 M = r, a coordinate
change shows the real singularity is at r = 0.

m Moreover, using different coordinate systems it is possible to
study different aspects of the Schwarzchild solution.
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Schwarzchild black holes

Three important aspects of such black holes are,

m The redshift factor: It is given by the gt component of the

metric,
/ 2M
1+z=14/1— —.
r

m The event horizon: |s the spacelike surface where the Killing
vector becomes null. It is located at

r=2M.

Event horizons can not be detected locally.
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m The surface gravity: It is the gravitational acceleration of a
stationary observer near the horizon, as seen at infinity. For
this metric it is

These three factors depend on the notion of Killing vector.
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m Static black holes are not the full story.

m Black holes evolve until they reach an equilibrium between
accretion and Hawking radiation.

m Unfortunately, there are not many solutions of the Einstein
equations for a time-dependent metric.

m There is no time-like Killing vector for time-dependent
spherically symmetric metrics.

m This leaves notions ( like the surface gravity, redshift factor
and event horizon ) which depend strongly on the existence of
a Killing vector field, rather unclear.

m It's not all bad news.
m Event horizons are not necessary to have Hawking radiation.
m There are other ways to obtain a notion of surface gravity.
Such as using the Kodama vector as some sort of substitute
for the Killing vector [2], or through the bulk gravity.
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Kodama vector

With spherical symmetry we have,

m The time-dependent metric:
ds? = g;j(x) dx’dx’ + r(x)?dQ2.
m Kodama proved [3] that the vector:
k? = €3 Vpr.

is divergence free.

m Furthermore, Kodama’s conservation law:

V.S% = V.(k, G) = 0.
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Kodama's conservation law gives us an insight on the problem in
spherical symmetry. Specifically,

m The Kodama vector can be decomposed as,
K =add — Kk =Fdt.

Suggesting,
m A natural time coordinate t, which allows us to write the
metric as,

ds® = g dt? + 2g,, dr dt + g, dr® + r2dQ2.
®m And, since the Kodama vector is orthogonal to dr,

ds? = gu dt? + g, dr? + r?dQ2.



Kodama time
LStandard form of the metric

Finally, without loss of generality, we can write the metric as

2
ds? = —e=2%(nt) (1 — 2mr, t) dt? + _dr + r2dQ2.
r 1—-2m(r,t)/r
For this coordinate system, we have
The Kodama vector is k? = e®(1, 0, 0, 0).

H The time translation vector T, does not coincide with the
Kodama vector. In fact

—oo(re) _ Tl
e = .
||KI[2

This expression allows us to foresee the ambiguity of the
notion of surface gravity, for the dynamic case.
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|—Koda\ma’s generalized conservation law

Additionally, with these coordinates it is clear that Kodama's
conserved current implies,

2 2
VaS? = —55 0 (=m', m;0,0)7 = —&2 - +m]=0.

Therefore, using the abstract definition of the Kodama vector, it
can be proved the existence of an extra conserved quantity,

Both conservation laws can be written in the statement,

ejb
a _
SneW — ? wa.
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The ambiguous surface gravity

Two ways of calculating the surface gravity [1],
Using the Killing vector: x2 = —3(V.x5)(V2xP).
Through the four-acceleration,

_2m(t,r) ®'(t,r)
r e

a=+Vapal=1/1

m'(t,r) m
+ — :
ra/1 - 2mtr) 2/ 2mtr)

m Both methods have problems when we study time-dependent
geometries.
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L Bulk gravity

Alternatively, we can calculate the gravity throughout the whole
spacetime, i.e. the bulk gravity. Consider the following null
geodesics,

¢ _ka—i—Var _ka—Var
2T (e 0 T e
With, £,n? =2 e_2¢(tvr)||k||2. They satisfy the geodesic equations,
€bvb€a = /{gfa, nbena = Knp n?.

From above we get, &, + kg = —2 ®(t, r), and

= <2m(t,r) 2m/(t,r)> )

r2

_ 2 <1 _ 2’”(”)> (¢, r) e~ _ (¢, r).
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Furthermore, this notion of gravitational acceleration is finite at
2m(t, ry) = ry,

_ 1-— 2m/(t7 rH) —®(t,ry) i
HH—rH—(t)e —q)(t, rH).

And, it coincides with the surface gravity in the static case.
However, we have the freedom to normalize the null geodesics
differently.

m With a different normalization the bulk gravity changes.

m The choice of normalization is quite arbitrary.
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Trapping horizon

Although it is local, a trapping horizon [4] [5] guarantees Hawking
radiation. To have a trapping horizon, the expansion of the null
geodesics has to satisfy, at ry = 2 m(t, ry)

0, = 0.
A
0, < 0.
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Let us use the following definition for the expansion [6] of the
outward radial null geodesic,

0y = V07 — Ky,
and of the inward radial null geodesic,
0, =V.n° — k.

6, = 2 ( _ 2'"(“)> e-9(tr)

r r

To obtain

and 0, = —0,. Also,

4 m(t
(n°Va0p),, = —m(rz’ ) o(tr)
H
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m We introduced a time coordinate parallel to the Kodama
vector; the Kodama time.
m Then we constructed a coordinate system, for which:

The outward and inward null geodesic gave us the notion of
bulk gravity, which is valid through the whole geometry
(except at r = 0).

We have an apparent horizon at

iy =2m(t,ry).
El We have a trapping horizon, ry, if
m(t, ry) > 0.

m However, the freedom of normalization of the null geodesics
produces an ambiguity on the notion of bulk gravity, and
surface gravity. Nevertheless the horizon is still a trapping one.
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What's next?

m Face the fact we have too much freedom!
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m Face the fact we have too much freedom!

m Work on the definition of quasi-local mass for this system of
coordinates.
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What's next?

m Face the fact we have too much freedom!

m Work on the definition of quasi-local mass for this system of
coordinates.

m Get a quasi-local notion of entropy.
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