Conceptual issues in numerical relativity

Jörg Frauendiener

Department of Mathematics and Statistics, University of Otago, New Zealand and Centre of Mathematics for Applications, Oslo, Norway

Christchurch, December 28, 2009

2 Some examples

- Bartnik-McKinnon solutions
- Critical collapse
- The BKL conjecture
- Gravitational waves and binary mergers

3 Conceptual issues

4 Visualisations

Why Computational Gravity?

Einstein 1915

Why Computational Gravity?

Einstein 1915 final form of the field equations for gravity

Why Computational Gravity?

Einstein 1915 final form of the field equations for gravity

J. Frauendiener (University of Otago)

Computational gravity

ACGRG5 3 / 24

Why Computational Gravity?

Of course not!

Einstein 1915 final form of the field equations for gravity

J. Frauendiener (University of Otago)

Computational gravity

ACGRG5 3 / 24

Example (Maxwell's theory of electrodynamics) Sommerfeld's book on Electrodynamics (1949) Part 1 Foundations and basic notions of Maxwell's electrodynamics Part 2 Derivation of the phenomena from Maxwell's equations OTAGO J. Frauendiener (University of Otago) 4 / 24 Computational gravity ACGRG5

Example (Maxwell's theory of electrodynamics) Sommerfeld's book on Electrodynamics (1949) Part 1 Foundations and basic notions of Maxwell's electrodynamics Part 2 Derivation of the phenomena from Maxwell's equations J. Frauendiener (University of Otago) Computational gravity ACGRG5

OTAGO

4 / 24

Example (Maxwell's theory of electrodynamics)

Sommerfeld's book on Electrodynamics (1949)

Part 1 Foundations and basic notions of Maxwell's electrodynamics

Part 2 Derivation of the phenomena from Maxwell's equations

Deductive procedure

• specify different scenarios (matter model, symmetry, etc)

Example (Maxwell's theory of electrodynamics)

Sommerfeld's book on Electrodynamics (1949)

Part 1 Foundations and basic notions of Maxwell's electrodynamics

Part 2 Derivation of the phenomena from Maxwell's equations

Deductive procedure

• specify different scenarios (matter model, symmetry, etc)

• find (approximate) solutions

Example (Maxwell's theory of electrodynamics)

Sommerfeld's book on Electrodynamics (1949)

Part 1 Foundations and basic notions of Maxwell's electrodynamics

Part 2 Derivation of the phenomena from Maxwell's equations

Deductive procedure

- specify different scenarios (matter model, symmetry, etc)
- find (approximate) solutions
- discover/explain new phenomena

Example (Maxwell's theory of electrodynamics)

Sommerfeld's book on Electrodynamics (1949)

Part 1 Foundations and basic notions of Maxwell's electrodynamics

Part 2 Derivation of the phenomena from Maxwell's equations

Deductive procedure

- specify different scenarios (matter model, symmetry, etc)
- find (approximate) solutions
- discover/explain new phenomena

Only the solutions give information about content and value of a theory

		Maxwell	Einstein	1
	theory in final form	1864	1915	
		1864		
		1888		
				OTAGO
				3. The Tange + Tage
J. Frauendiener (Un	iversity of Otago) Cor	nputational gravity		ACGRG5 5 / 24

		Maxwell	Einstein	
	theory in final form	1864	1915	
	waves predicted	1864	1917	
	clarified			
	detected	1888		
				OTAGO
J. Frauendiener (Universit	ity of Otago) Com	putational gravity		ACGRG5 5 / 24

	Maxwell	Einstein	
theory in final form	1864	1915	
waves predicted	1864	1917	
clarified		1962	
detected	1888		J
			OTAGO
			N Phase Manager & High
J. Frauendiener (University of Otago) Com	nputational gravity		ACGRG5 5 / 24

theory in final form 1864 1915	- 1
waves predicted 1864 1917	
clarified — 1962	
detected 1888 ???	
	DTAGO
J. Frauendiener (University of Otago) Computational gravity ACGRG5 5	(maxima) ne Filmanje o Dilgo

	Maxwell	Einstein	
theory in final form	1864	1915	
waves predicted	1864	1917	
clarified	—	1962	
detected	1888	???	
			OTAGO
			2 Han Manya - May
J. Frauendiener (University of Otago) Con	nputational gravity		ACGRG5 5 / 24

	Maxwell	Einstein
theory in final form	1864	1915
waves predicted	1864	1917
clarified	—	1962
detected	1888	???

Einstein's theory is conceptually and technically much more challenging

J. Frauendiener (University of Otago)

Computational gravity

provide solutions for

- explorations
 - phase-space of GR is large
 - 'see what happens'
- theoretical purposes
 - formulate/verify/refute conjectures
- experiments
 - very (?) specific situations (cp. exact solutions)
 - predictions (wave templates)

provide **solutions** for

- explorations
 - phase-space of GR is large
 - 'see what happens'
- theoretical purposes
 - formulate/verify/refute conjectures
- experiments
 - very (?) specific situations (cp. exact solutions)
 - predictions (wave templates)

provide **solutions** for

- explorations
 - phase-space of GR is large
 - 'see what happens'
- theoretical purposes
 - formulate/verify/refute conjectures

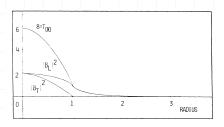
experiments

very (?) specific situations (cp. exact solutions)

predictions (wave templates)

provide **solutions** for

- explorations
 - phase-space of GR is large
 - 'see what happens'
- theoretical purposes
 - formulate/verify/refute conjectures
- experiments
 - very (?) specific situations (cp. exact solutions)
 - predictions (wave templates)


Bartnik-McKinnon solutions

Bartnik-McKinnon, 1988

- "strong numerical evidence" for a family of particle-like solutions of *SU*(2)-EYM equations
- later also black hole solutions found
- in contrast to black holes have no hair beliefs
- question of stability properties for solutions
- sparked a vast amount of mathematical investigations
 - rigorous existence proofs (for arbitrary gauge groups)
 - rigorous stability results (for arbitrary gauge groups)
 - generalisations to $\Lambda \neq 0$

Bartnik-McKinnon solutions

Concentration on energy density

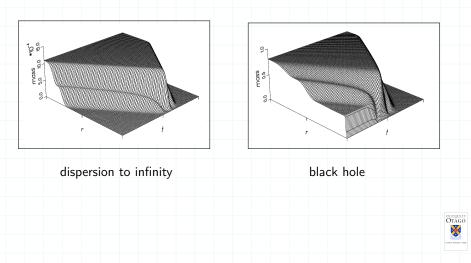
Bartnik-McKinnon solutions

Bartnik-McKinnon, 1988

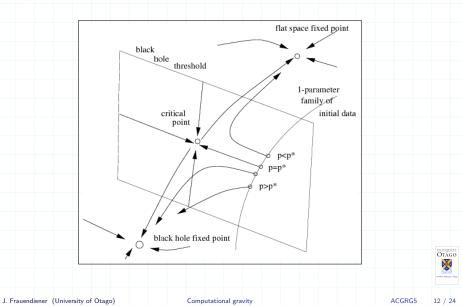
- "strong numerical evidence" for a family of particle-like solutions of *SU*(2)-EYM equations
- later also black hole solutions found
- in contrast to black holes have no hair beliefs
- question of stability properties for solutions
- sparked a vast amount of mathematical investigations
 - rigorous existence proofs (for arbitrary gauge groups)
 - rigorous stability results (for arbitrary gauge groups)
 - generalisations to $\Lambda \neq 0$

Choptuik, 1993

- study of spherically symmetric scalar field collapse (arbitrarily small mass?)
- discovered critical behaviour of solutions near dispersion/collapse boundary


• bh mass scales as a power-law

$$M \propto (p - p_*)^{\gamma}$$


- critical exponent γ independent of ic
- approach to discrete self-similar solution (DSS, echoing) in strong curvature region close to the collapse, independent of ic
- ∴ universal behaviour (within one model)
- importance of very high spatial resolution

Two evolutions

Phase space

Choptuik, 1993

- study of spherically symmetric scalar field collapse (arbitrarily small mass?)
- discovered critical behaviour of solutions near dispersion/collapse boundary
- bh mass scales as a power-law

$$M \propto (p - p_*)^{\gamma}$$

- critical exponent γ independent of ic
- approach to discrete self-similar solution (DSS, echoing) in strong curvature region close to the collapse, independent of ic
- ... universal behaviour (within one model)
- importance of very high spatial resolution

- Critical phenomena have since then been observed in many other relativistic systems
- many different numerical implementations used
- connection with phase transitions in statistical physics
- rigorous theoretical understanding is still lacking
- heuristic explanations use renormalisation group methods
- dynamical systems approach
- so far no exact solution showing DSS behaviour has been found

The BKL conjecture

- Singularities develop under very general circumstances (Penrose et al)
- no information about the nature of these singularities
- heuristic study by Belinskii, Khalatnikov and Lifshitz

BKL conjecture

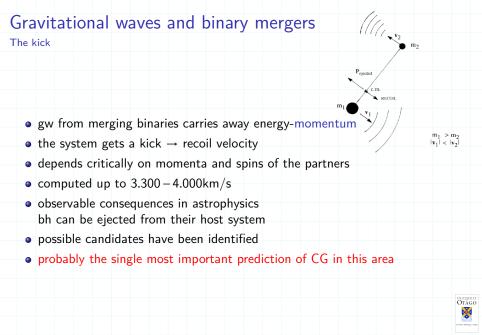
The approach to a generic singularity becomes local and oscillatory (Mixmaster)

- Berger, Moncrief (1993) use numerical methods to investigate:
 - BKL seems to be true: spatial derivatives become unimportant, oscillatory behaviour except for isolated points
 - but not conclusive: high symmetry (Gowdy), lack of resolution, 'spiky features'
- Uggla et al. (2003) devise set of scale-invariant variables, used to formulate the conjecture precisely
- calculations by Garfinkle in the general case support the BKL conjecture but resolution is still too low to be conclusive

The BKL conjecture

The spikes

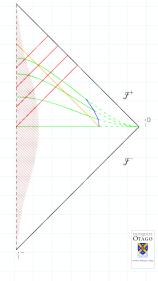
- higher resolution confirms the unexpected presence of the spikes
- Rendall, Weaver construct explicit solutions with spikes from solutions without spikes (Bäcklund type trafo)
- they find true (geometric) and false (coordinate) spikes
- leads to rigorous proof of existence of Gowdy space-times with spikes
- spikes have been found in more general cosmological space-times with an intriguing dynamics



Gravitational waves and binary mergers

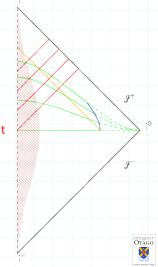
The holy grail

- first attempts in the 1950's by L. Smarr and others
- many hundreds of man-years
- slow progress due to lack of understanding on several levels:
 - mathematical well-posedness, hyperbolicity
 - constraint propagation and damping
 - non-linear self-interaction
 - efficiency, accuracy and stability
- break-through Pretorius (2005)
- now several groups use different codes and methods produce very similar results
- field has developed almost into an engineering science



Conceptual issues

Gravitational radiation at null-infinity ${\mathscr I}$


- evolution proceeds on space-like hypersurfaces
- radiation travels on null-hypersurfaces
- grid boundary is time-like hypersurface
- influences radiation along a null-hypersurface
- ultimately gw hit the grid boundary
 - \rightarrow uncontrolled interaction
- needs a 'transparent' boundary condition

Conceptual issues

What boundary condition?

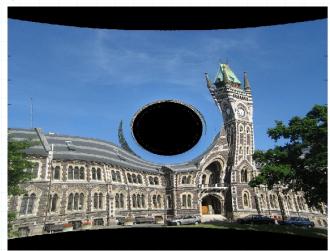
- numerical stability
- mathematical well-posedness of IBVP
- physically relevant, transparent
- outgoing radiation at boundary is observer dependent
- o currently:
 - stay away from the influence of the boundary damp at the boundary
- accuracy depends on the boundary treatment

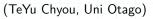
Conceptual issues

Conformal space-time

- Penrose compactification (1963) attach a regular boundary to space-time
- evolve with Friedrich's CFE
- \bullet foliate with space-like hypersurfaces intersecting ${\mathscr I}$
- \mathscr{I} is characteristic \rightarrow no bc necessary
- $\bullet\,$ pick up the unique wave signal on ${\mathscr I}\,$
- conceptually less approximations: use as 'reference'

OTAGO


7+


	Visualisations	
Visualisations		
Special relativity		
	eiffel.mpg	
	(Th Müller, Uni Tübingen)	
		OTAGO

Visualisations

Visualisations

General relativity

J. Frauendiener (University of Otago)

Computational gravity

OTĂGO

	Visualisations	
Visualisations		
General relativity		
Г		
	earth.mov	
	(Th Müller, Uni Tübingen)	OTAGO