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Why Computational Gravity?

Maxwell theory

Example (Maxwell’s theory of electrodynamics)
Sommerfeld’s book on Electrodynamics (1949)

Part 1 Foundations and basic notions of Maxwell’s electrodynamics
Part 2 Derivation of the phenomena from Maxwell’s equations

Deductive procedure
specify different scenarios (matter model, symmetry, etc)
find (approximate) solutions
discover/explain new phenomena

Only the solutions give information about content and value of a theory
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Why Computational Gravity?

Timescales for Maxwell’s and Einstein’s theory

Maxwell Einstein

theory in final form 1864 1915

waves predicted 1864 1917

clarified — 1962

detected 1888 ???

Einstein’s theory is conceptually and technically much more challenging
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Why Computational Gravity?

Role for computations

provide solutions for
explorations

phase-space of GR is large
’see what happens’

theoretical purposes
formulate/verify/refute conjectures

experiments
very (?) specific situations (cp. exact solutions)
predictions (wave templates)
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Some examples Bartnik-McKinnon solutions

Bartnik-McKinnon solutions

Bartnik-McKinnon, 1988
“strong numerical evidence” for a family of particle-like solutions of
SU(2)-EYM equations
later also black hole solutions found
in contrast to black holes have no hair beliefs
question of stability properties for solutions
sparked a vast amount of mathematical investigations

rigorous existence proofs (for arbitrary gauge groups)
rigorous stability results (for arbitrary gauge groups)
generalisations to Λ 6= 0
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Some examples Bartnik-McKinnon solutions

Bartnik-McKinnon solutions
Concentration on energy density

J. Frauendiener (University of Otago) Computational gravity ACGRG5 8 / 24



Some examples Bartnik-McKinnon solutions

Bartnik-McKinnon solutions

Bartnik-McKinnon, 1988
“strong numerical evidence” for a family of particle-like solutions of
SU(2)-EYM equations
later also black hole solutions found
in contrast to black holes have no hair beliefs
question of stability properties for solutions
sparked a vast amount of mathematical investigations

rigorous existence proofs (for arbitrary gauge groups)
rigorous stability results (for arbitrary gauge groups)
generalisations to Λ 6= 0

J. Frauendiener (University of Otago) Computational gravity ACGRG5 9 / 24



Some examples Critical collapse

Critical collapse

Choptuik, 1993
study of spherically symmetric scalar field collapse (arbitrarily small mass?)
discovered critical behaviour of solutions near dispersion/collapse boundary
bh mass scales as a power-law

M ∝ (p−p∗)γ

critical exponent γ independent of ic
approach to discrete self-similar solution (DSS, echoing) in strong curvature
region close to the collapse,independent of ic

∴ universal behaviour (within one model)
importance of very high spatial resolution
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Some examples Critical collapse

Critical collapse
Two evolutions

dispersion to infinity black hole

J. Frauendiener (University of Otago) Computational gravity ACGRG5 11 / 24



Some examples Critical collapse

Critical collapse
Phase space
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Some examples Critical collapse

Critical collapse

Critical phenomena have since then been observed in many other relativistic
systems
many different numerical implementations used
connection with phase transitions in statistical physics
rigorous theoretical understanding is still lacking
heuristic explanations use renormalisation group methods
dynamical systems approach
so far no exact solution showing DSS behaviour has been found
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Some examples The BKL conjecture

The BKL conjecture

Singularities develop under very general circumstances (Penrose et al)
no information about the nature of these singularities
heuristic study by Belinskii, Khalatnikov and Lifshitz

BKL conjecture
The approach to a generic singularity becomes local and oscillatory (Mixmaster)

Berger, Moncrief (1993) use numerical methods to investigate:
BKL seems to be true: spatial derivatives become unimportant, oscillatory
behaviour except for isolated points
but not conclusive: high symmetry (Gowdy), lack of resolution, ‘spiky features’

Uggla et al. (2003) devise set of scale-invariant variables, used to formulate
the conjecture precisely
calculations by Garfinkle in the general case support the BKL conjecture but
resolution is still too low to be conclusive
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Some examples The BKL conjecture

The BKL conjecture
The spikes

higher resolution confirms the unexpected presence of the spikes
Rendall, Weaver construct explicit solutions with spikes from solutions
without spikes (Bäcklund type trafo)
they find true (geometric) and false (coordinate) spikes
leads to rigorous proof of existence of Gowdy space-times with spikes
spikes have been found in more general cosmological space-times with an
intriguing dynamics
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Some examples Gravitational waves and binary mergers

Gravitational waves and binary mergers
The holy grail

first attempts in the 1950’s by L. Smarr and others
many hundreds of man-years
slow progress due to lack of understanding on several levels:

mathematical well-posedness, hyperbolicity
constraint propagation and damping
non-linear self-interaction
efficiency, accuracy and stability

break-through Pretorius (2005)
now several groups use different codes and methods
produce very similar results
field has developed almost into an engineering science
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Some examples Gravitational waves and binary mergers

Gravitational waves and binary mergers
The kick

gw from merging binaries carries away energy-momentum
the system gets a kick → recoil velocity
depends critically on momenta and spins of the partners
computed up to 3.300−4.000km/s
observable consequences in astrophysics
bh can be ejected from their host system
possible candidates have been identified
probably the single most important prediction of CG in this area
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Conceptual issues

Conceptual issues
Gravitational radiation at null-infinity I

evolution proceeds on space-like hypersurfaces
radiation travels on null-hypersurfaces
grid boundary is time-like hypersurface
influences radiation along a null-hypersurface
ultimately gw hit the grid boundary
→ uncontrolled interaction
needs a ‘transparent’ boundary condition
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Conceptual issues

Conceptual issues
What boundary condition?

numerical stability
mathematical well-posedness of IBVP
physically relevant, transparent
outgoing radiation at boundary is observer dependent
currently:
stay away from the influence of the boundary
damp at the boundary
accuracy depends on the boundary treatment
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Conceptual issues

Conceptual issues
Conformal space-time

Penrose compactification (1963)
attach a regular boundary to space-time
evolve with Friedrich’s CFE
foliate with space-like hypersurfaces intersecting I

I is characteristic → no bc necessary
pick up the unique wave signal on I

conceptually less approximations:
use as ‘reference’
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Visualisations

Visualisations
Special relativity

eiffel.mpg

(Th Müller, Uni Tübingen)
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Visualisations

Visualisations
General relativity

(TeYu Chyou, Uni Otago)
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General relativity

earth.mov

(Th Müller, Uni Tübingen)
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