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Modified ansatz

1) consider Kerr-Schild metrics as exact linear perturbations of 
Minkowski space

2) solve Einstein's field equations order by order in powers of H



The e-expansion

Connection:



Ricci tensor:



where



Kinematical properties of the congruence k



First result: k be geodesic



Simplified tetrad procedure







Completion of the solution



the solution is



Kerr solution:



Conclusions

• We have presented an alternative derivation of Kerr solution by treating Kerr-Schild
metrics as exact linear perturbations of Minkowski spacetime. 
In fact they have been introduced as a linear superposition of the flat spacetime
metric and a squared null vector field k multiplied by a scalar function H.

• In the case of Kerr solution the vector k is geodesic and shearfree and it is
independent of the mass parameter M, which enters instead the definition of H
linearly.
This linearity property allows one to solve the field equations order by order in powers
of H in complete generality, i.e. without any assumption on the null congruence k.
The Ricci tensor turns out to consist of three different contributions.
Third order equations all imply that k must be geodesic; it must be also shearfree as
a consequence of first order equations, whereas the solution for H comes from
second order equations too.

• Generalization to Kerr-Newman: k depends only on the rotation parameter a and not
on the mass M or charge Q. Furthermore, the electromagnetic field is linear in Q and 
the metric is linear in M and Q² since the function H is obtained simply by replacing
M M - Q² /(2r).
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