Non-singular Warped Compactifications and the quest for a Realistic Cosmology

Ishwaree Neupane

Fifth Australasian Conference on General Relativity and Gravitation
15-18 Dec 2009, University of Canterbury
Warped Compactification

• Basic Ideas

 • Extra Dimensions $$\Rightarrow$$ Higher dim spacetime: “bulk”
 • Localization of matter to a subspace “3-brane”
 (in contrast with Kaluza-Klein approach)

• Motivations

 • Particle Physics: Mass Hierarchy (why $$M_{EW} \ll M_{Pl}$$?)
 • Braneworld Gravity: A new Compactification Scheme
General Motivations

- String theory with fluxes + branes: a consistent quantum theory of gravity if there are 10 or 11 dimensions in total
- Warping generic

Interesting physics:

a) SUSY breaking; particle physics (model dependent)

b) Cosmology: inflation, dark energy (Universal aspect)
Specific Motivation

Observations seems to fit (nicely) with Einstein’s GR with a cosmological constant term: How to get this picture from a compactified string/M-theory?

10d, 11d String/M theory ~Unique

4d phenomenology/ Cosmology Non-unique?

String ``Compactifications''
Warped Randall-Sundrum model

\[S = \frac{1}{2\kappa_5^2} \int_{M_5} d^5x \sqrt{-g} (R - 2\Lambda_5) - \int_{\Sigma_4} d^4x \sqrt{-q} \sigma \]

\[ds^2 = dy^2 + e^{-2|y|/\ell} \eta_{\mu\nu} dx^\mu dx^\nu \quad \text{for} \quad \kappa_5^2 \sigma = \sqrt{-6\Lambda_5} \]

- Warp factor \(A(y) = e^{-|y|/\lambda} \) decreases exponentially as \(|y| \rightarrow \infty \)
- Extra dim is effectively compact with size \(\sim \lambda \)

\[b(y) = e^{-|y|/\ell}; \quad \ell^2 = -\frac{6}{\Lambda_5} \]

Z\(_2\)-symmetry
Two-brane Model

Dimension of Bulk = 1 + Dimension of Brane

This picture enormously changes the low energy perspective

ISH NEUPANE March 2009, Seoul Nat'l University
5D de Sitter Cosmology

Effective Action

\[
S = \frac{M_5^3}{2} \int d^5 x \sqrt{-g_5} (R - 2\Lambda_5) + \frac{M_5^3}{2} \int d^4 x \sqrt{-g_4} (-T_3)
\]

Ansatz:

\[
d s_5^2 = e^{2A(z)} \left(-dt^2 + a^2(t) \left[\frac{dr^2}{1-kr^2} + r^2(d\theta^2 + \sin^2 \theta d\phi^2) \right] + \rho^2 dz^2 \right)
\]

Exact solution:

\[
a(t) = \frac{1}{2} e^{\mu t / \rho} + \frac{k \rho^2}{2 \mu^2} e^{-\mu t / \rho}, \quad A(z) = \frac{24 \mu^2}{24 \mu^2 e^{\mu |z|} + \Lambda_5 \rho^2 e^{-\mu |z|}}
\]
Dimensional reduction

\[S_{\text{eff}} \supset \frac{M_5^3 \rho}{2} \int d^4 x \sqrt{-\hat{g}} \int d z e^{3\Lambda(z)} \left(\hat{R}_4 - L_\Lambda - 2\Lambda_5 e^{2\Lambda(z)} \right) \]

\[L_\Lambda = \frac{12 \mu^2}{\rho^2} \left(1 - \frac{160 \Lambda_5 \mu^2 \rho^2}{\left(24 \mu^2 e^{\mu|z|} + \Lambda_5 \rho^2 e^{-\mu|z|}\right)^2} \right) \]

- \frac{16 \mu}{\rho^2} \left(\frac{24 \mu^2 e^{\mu|z|} - \Lambda_5 \rho^2 e^{-\mu|z|}}{24 \mu^2 e^{\mu|z|} + \Lambda_5 \rho^2 e^{-\mu|z|}} \right) \delta(z)

Bulk contribution

Boundary contribution

Source term/ Z2 symmetry
RS type (effectively) 5d-regions can arise in warped compactifications of type IIB string theory

The KS geometry in D=10 dimensions has some common features with warped Randall-Sundrum 5D braneworld model

\[Y_6 = R \times T^{1,1} = R \times (S^2 \times S^2) \otimes S^1 \]
Λ or dark energy in string theory

KKLT (Kachru, Kallosh, Linde, Trivedi) 2003

1) Start with a theory with runaway potential (AdS minimum)
2) Bend this potential invoking some (non-perturbative) effects
3) Uplift the minimum to the state with positive vacuum energy by adding a positive energy of an anti-D3 brane in warped Calabi-Yau space

This proposal suffers from fine-tuning issues associated with the necessary flatness of the potential and or the level of fine tuning required for Λ to be the present-day gravitational vacuum (dark energy) density
String Theory and Λ

Dark energy – likely to be linked to moduli fields, e.g., size and shape of compact space

Λ – could depend on fundamental (UV) structure of theory and statistics of string vacua: internal space geometry, branes, fluxes, etc

$V(\phi)$

$\Lambda > 0$

$\Lambda = 0$

$\Lambda < 0$
What are the obstacles for finding de Sitter solutions in string/ M theory?
A celebrated answer
Brane World ‘no-go theorem’

‘No-go theorem’ forbids cosmic acceleration in cosmological solution arising from compactification of pure SUGRA where the internal space is time-dependent, non-singular compact manifold without boundary.

Why?
- Gibbon (1984)
- Maldacena-Nunez (2001)

Acceleration requires violation of 4D strong energy condition

\[R^{(4)}_{00} < 0 \quad \text{or} \quad T_{AB} \xi^A \xi^B < 0 \]

If extra dimensions are warped and static, then in a compactified theory

\[R^{(4)}_{00} \geq 0 \]

Provided that SEC holds for D=10 or 11D SUGRA

\[R^{(D)}_{00} \geq 0 \]
Why should the SEC be violated?

To see this one considers a FRW metric

\[ds^2_4 = -dt^2 + a(t)^2 \left(\frac{dr^2}{1 - kr^2} + r^2 d\Omega^2_2 \right) \]

The time-time component of 4D Ricci tensor gives

\[R^{(4)}_{00} = -\frac{3\ddot{a}}{a} \]

Acceleration requires \(\dot{a}/a > 0 \) and \(\ddot{a}/a > 0 \) hence \(R^{(4)}_{00} < 0 \)

The 4D Einstein field equations imply that

\[R^{(4)}_{00} = T_{00} + g^{ij}T_{ij} = \rho + 3p \]

An accelerated expansion is possible in a universe governed by Einstein's gravity only if the matter in it violates SEC.
A celebrated version of “no-go” theorem

Consider a (4+m)-dimensional metric ansatz

$$\text{ds}_D^2 = e^{2A(y)} \text{ds}_4^2(x) + g_{mn}(y) dy^m dy^n$$

This gives

$$R^{(D)}_{00}(x, y) = R^{(4)}_{00} - \frac{1}{4} e^{-2A(y)} \nabla^2 e^{4A(y)}$$

$$\Rightarrow \left[e^{2A(y)} \right] R^{(4)}_{00} = \int e^{2A(y)} R^{(D)}_{00} + \frac{1}{4} \int \nabla^2 e^{4A(y)}$$

If the last term above vanishes, then

$$R^{(D)}_{00} \geq 0 \text{ only if } R^{(4)}_{00} \geq 0$$
Any time that one does not understand something, one can point to details that do not work.

It is important to identity what is wrong qualitatively and give the best clues to future progress.
1. Allow internal space to be time-dependent, analogue of time-dependent scalar fields – Lukas et al ‘00

2. Drop condition that internal space is flat or positive, it may be negatively curved (hyperbolic)

Townsend-Wohlfarth, N. Ohta, IPN et al 2003

A compactified theory on hyperbolic spaces leads to cosmologies with transient accelerating phase.

SUGRA solutions describing accelerating cosmologies from twisted spaces:
Recent Progress

The limitation with warped models studied previously have arisen from an over simplification of 10d metric ansatz.

IPN: Non-singular warped compatification, to appear

These papers give a few explicit examples of non-singular warped compactification on de Sitter spaces.
An explicit example of de Sitter compactification

\[ds_{10}^2 = e^{2A(y)} ds_4^2(x) + e^{-\alpha A(y)} ds_6^2(y) \]

\[ds_4^2(x) = -dt^2 + a(t)^2 \, dx_3^2 \]

\[ds_6^2 \equiv g_{mn}(y) \, dy^m \, dy^n = dy^2 + \alpha_1 \, y^2 \, ds_{X_5}^2 \]

\[R_6 = \frac{20 \,(1 - \alpha_1)}{\alpha_1 \, y^2} \]
A simple example of Y6 is the non-compact Calabi-Yau

The base of the conifold is Einstein-Sasaki space

$$T^{1,1} = (SU(2) \times SU(2)) / U(1)$$

$$g_{ij} d\theta^i d\theta^j = \frac{1}{9} (d\psi + \cos \theta_1 d\varphi_1 + \cos \theta_2 d\varphi_2)^2 + \frac{1}{6} \sum_{a=1}^{2} (d\varphi_a^2 + \sin \theta_a d\varphi_a^2)$$

$y=0$
The Ansatz

\[ds_{10}^2 = e^{2A(y)} ds_4^2(x) + e^{-\alpha A(y)} ds_6^2(y) \]

\[ds_6^2 \equiv g_{mn}(y) dy^m dy^n = \rho^2 (dy^2 + \alpha_1 y^2 ds_{X_5}^2) \]

solves the 10d vacuum Einstein equations when

\[e^{(\alpha+2)A} = \frac{3(\alpha + 2)^2}{32} \frac{y^2}{L^2} \]

\[\alpha_1 = \left(\frac{\alpha + 2}{8} \right) \]

\[a(t) \propto e^{Ht} \]

\[H = \sqrt{\frac{1}{\rho^2 L^2}} \]

A drawback of this solution is that the 6d metric and hence the warp factor is singular at \(y=0 \)
Why did the previous authors -- including Gibbons, Maldacena-Nunez, Giddings et al and many others -- not realise (or somehow rule out) the above explicit de Sitter solutions of 10D Einstein equations?
Warping generic:

\[ds_{10}^2 = e^{2A(y)} d\tilde{s}_4^2(x) + e^{-2A(y)} g_{mn} dy^m dy^n \]

\[G^{\nu}_\mu = \kappa_{10}^2 T^{\nu}_\mu , \quad G^n_m = \kappa_{10}^2 T^n_m \]

\[\nabla_y^2 A = \frac{1}{4} e^{-4A} \hat{R}_4 + \frac{\kappa_{10}^2}{8} e^{-2A} \left(T^m_m - T^\mu_\mu \right) \]

= 0 flat space
> 0 de Sitter space

with \(\int \nabla_y^2 A = 0 \) de Sitter solutions are not possible

Giddings, Kachru & Polchinski 2001

> 0 with p-brane, p<7
with q-flux, q>1

ISH NEUPANE 16 Dec 2009, 5th ACGRG, University of Canterbury 23
Warping generic, but NOT the proof

\[ds^2_{10} = e^{2A(y)} ds^2_4(x) + e^{-\alpha A(y)} g_{mn} dy^m dy^n \]

G^\nu_{\mu} = \kappa \frac{2}{10} T^\nu_\mu , \quad G^n_m = \kappa \frac{2}{10} T^n_m \Rightarrow

\[\nabla^2_y A = \frac{1}{4} e^{-(2+\alpha)A} \hat{R}_4 - 2(2 - \alpha)(\partial_y A)^2 + \frac{\kappa^2_{10}}{8} e^{-\alpha A}(T^m_m - T^\mu_\mu) \]

\[\nabla^2_y e^{(2+\alpha)A} = \frac{2 + \alpha}{4} \hat{R}_4 - \frac{2 - 3\alpha}{2 + \alpha} e^{-(2+\alpha)A}(\partial_y A)^2 + \frac{2 + \alpha}{8} \kappa^2_{10}(T^m_m - T^\mu_\mu) \]

with \(\int \nabla^2_y e^{(2+\alpha)A} = 0 \)

de Sitter solutions are possible

IPN: arxiv:0901.2568
10D Supergravity Action

\[I_{10-D} = \frac{1}{2\kappa^2_{10}} \int d^{10}x \sqrt{-g_{10}} \left[R_{10} - \frac{1}{2} (\partial \Phi)^2 - \frac{1}{12} e^{-\Phi} (\partial B_2)^2 - \frac{1}{2} e^{2\Phi} (\partial C)^2 \right. \\
\left. - \frac{1}{12} e^\Phi (\partial C_2 - C \partial B_2)^2 - \frac{1}{4 \times 5!} F_5^2 \right] - \frac{1}{2\kappa^2_{10}} \int d^{10}x \varepsilon_{10} C_4 \partial C_2 \partial B_2 \]

(\partial B_2) \ldots = 3 \partial [B \ldots], (\partial C_4) \ldots = 5 \partial [C \ldots], F_5 = \partial C_4 + 5(B_2 \partial C_2 - C_2 \partial B_2)
\[\nabla_y^2 A = \frac{1}{4} e^{-(2+\alpha)A} \hat{R}_4 - 2(2 - \alpha)(\partial_y A)^2 \]
\[+ \frac{K_{10}^2}{8} e^{-\alpha A} \left(T^m_m - T^\mu_\mu \right) \]
\[+ \text{fluxes} \]

Fluxes generally contribute positively
The two major assumptions that went into the earlier discussions of braneworld no-go theorems are

1. \[V_6^w = \int d^6 y \sqrt{g_6} \ e^{(2-3\alpha)A} = \text{const}, \]

\[\frac{1}{G_N^{\text{eff}}} \equiv \frac{M_{10}^8 \times V_6^w}{(2\pi)^6} \]

The natural “constants” change neither in time nor with space when one moves away from the 4d hypersurface!

2. \[\int \nabla^2 y \ e^{nA(y)} = 0 \] (with arbitrary n)

These constraints are ‘strict’ which are generally not satisfied by cosmological solutions, especially, in the presence of some localised sources like branes
An explicit example: non-singular solution

\[
\begin{align*}
\text{ds}^2_{10} &= e^{2A(z)} \left(-dt^2 + a(t)^2 d\bar{x}_3^2 \right) + e^{-\alpha A(z)} \text{ds}^2_{6}(z) \\
\text{ds}^2_{6} &\equiv g_{mn}(z) dz^m dz^n \\
&= \rho^2 \left(\sinh^2(z + z_0) + \alpha_1 \cosh^2(z + z_0) \right) ds^2_{x_5}
\end{align*}
\]

This solves the 10D Einstein equations when

\[
A(y) = \frac{2}{2 + \alpha} \ln \left(\cosh(z + z_0) \times \sqrt{\frac{3(2 + \alpha)^2 \mu^2}{32}} \right)
\]

\[
\alpha_1 = \frac{(2 + \alpha)^2}{8}
\]

\[
a(t) \propto e^{Ht} \quad H = \sqrt{\frac{\mu^2}{\rho^2}}
\]
\[(10) R_{00}(x, y) = (4) \hat{R}_{00}(x) + (4) \hat{R}_{00}(x) + \frac{\mu^2}{\rho^2} \left(3 + \frac{3(2 + \alpha)}{8} \coth(z + z_0) \delta(z) \right) \]

It is possible to get acceleration without violating the 10D strong energy condition

\[\hat{R}_{00} < 0 \]

\[(10) R_{00} \geq 0 \]

\[d s_{10}^2 = e^{-A_0} \left(\frac{3(2 + \alpha)^2 \mu^2 \cosh^2 z}{32} \right)^{2/(2+\alpha)} \]

\[\times \left(d s_4^2 + \frac{32 \rho^2}{3(2 + \alpha)^2 \mu^2} \tanh^2 z \left(d z^2 + \frac{(2 + \alpha)^2}{8 \coth^2 z \ d s_{x_5}^2} \right) \right) \]

\[V_6 \sim (\rho / \mu)^6 \ln \cosh z \sim z \]
Dimensional Reduction

\[ds_{10}^2 \sim M_{10}^8 \int d^{10} x \sqrt{-g_{10}} \left(R_{(10)} + \ldots \right) \]

\[= \frac{e^{-4A_0}}{\rho^6} M_{10}^8 \times V_6 \int d^4 x \sqrt{-\hat{g}_4} (\hat{R}_{(4)} - 2 \Lambda_4) \]

\[- \frac{e^{-4A_0}}{\rho^6} M_{10}^8 V_5 \int (\cosh z)^{16/(2+\alpha)} \delta(z) \, dz \]

If one wants to tune \(\Lambda_4 \sim 10^{-120} M_{pl}^2 \) then one is required to take \(A_0 \geq 136 \) provided \(M_{10} \geq TeV \)

It is NOT natural to just set \(\Lambda_4 \) to zero!
Summary

Warped compactifications:

- Possibly ubiquitous among geometric solutions and provide new pictures of the universe and also new opportunities for studying cosmology.

- Potentially quite rich phenomenology: dS, hierarchy, inflation,....

- Cosmic acceleration (attributed vacuum energy or Λ) is an extra-dimensional phenomenon.
“At this point we notice that this equation is beautifully simplified if we assume that space–time has 92 dimensions.”

Thanks
Warped compactifications

Summary

Particle Physics

Cosmic acceleration (inflation or dark energy) is an extra-dimensional Phenomenon in many higher dimensional gravity models

Cosmology

Potentially quite rich phenomenology: dS, hierarchy, inflation,....

Ubiquitous among geometric solutions and provide new pictures of the universe and also new opportunities for studying cosmology.

Cosmology + LHC!