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1. Background: Isotropy, Quiescent
Cosmology...
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Observations: universe is isotropic in our observable

vicinity
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Why is the universe isotropic?
Chaotic Cosmology? (Misner 1968)
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• universe initially highly irregular and chaotic
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Why is the universe isotropic?
Chaotic Cosmology? (Misner 1968)

• universe initially highly irregular and chaotic
⇒ avoids too stringent initial constraints

• irregularities smoothed out by dissipation

• according to this picture:
universe appears isotropic, as we happen to live at a
somewhat late stage of its evolution
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Why is the universe isotropic?
Chaotic Cosmology? (Misner 1968)

• universe initially highly irregular and chaotic
⇒ avoids too stringent initial constraints

• irregularities smoothed out by dissipation

• according to this picture:
universe appears isotropic, as we happen to live at a
somewhat late stage of its evolution

• however: problems with dissipation and entropy
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Alternative

Quiescent Cosmology (Barrow 1978)

• lack of chaos in infant universe
⇒ initially matter in thermal equil.
⇒ entropy apparently high

2

• nevertheless: entropy rise due to
anomalous behaviour of gravita-
tional entropy ⇒ increases with
clumping ⇒ maximal in a black hole
(maximally clumpy object) SBH ∝
M 2
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Quiescent Cosmology (Barrow 1978)

• lack of chaos in infant universe
⇒ initially matter in thermal equil.
⇒ entropy apparently high

2

• nevertheless: entropy rise due to
anomalous behaviour of gravita-
tional entropy ⇒ increases with
clumping ⇒ maximal in a black hole
(maximally clumpy object) SBH ∝
M 2
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Weyl Curvature Hypothesis

• universe evolved away from regularity due to
gravitational attraction ⇒ clumping to stars, galaxies
etc. accounts for entropy increase
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Weyl Curvature Hypothesis

• universe evolved away from regularity due to
gravitational attraction ⇒ clumping to stars, galaxies
etc. accounts for entropy increase

• initial state: low degree of clumping ⇒ isotropy

hypothesis for the initial low-entropy constraint (Penrose 1979)

grav. entropy ⇔ grav. clumping ⇔ Weyl tensor Cabcd

Weyl curvature is bounded, e.g. matter dominated

lim
T→0+

CabcdC
abcd

RefRef
= 0.
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Weyl Curvature Hypothesis

• universe evolved away from regularity due to
gravitational attraction ⇒ clumping to stars, galaxies
etc. accounts for entropy increase

• initial state: low degree of clumping ⇒ isotropy

hypothesis for the initial low-entropy constraint (Penrose 1979)

grav. entropy ⇔ grav. clumping ⇔ Weyl tensor Cabcd

Weyl curvature is bounded, e.g. matter dominated

lim
T→0+

CabcdC
abcd

RefRef
= 0.

• universe appears isotropic, because we happen to live
at an early stage of its evolution
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Summary of quiescent cosmology
for the initial state

• thermal equilibrium and Cabcd bounded

⇒ spatial isotropy and homogeneity at Big Bang

⇒ initial singularity must have been "isotropic" as in the
FRW models
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Cosmological fluid flow and
kinematics

• ∃ (timelike) velocity vector field u in space-time
(M,g), representing average matter movement
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Cosmological fluid flow and
kinematics

• ∃ (timelike) velocity vector field u in space-time
(M,g), representing average matter movement

• define kinematic quantities - expansion θ, shear σ,
vorticity ω and acceleration u̇a := ua

;bu
b - via covar.

deriv. of u
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expansionθ, shearσ and vorticityω of the fluid

calculated via derivatives of u
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How to describe isotropy

several ways, here 2 types of isotropy (e.g. found in FRW
cosmologies)
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How to describe isotropy

several ways, here 2 types of isotropy (e.g. found in FRW
cosmologies)

(1) Kinematic isotropy relative to u:
no preferred directions due to shear, vorticity and
acceleration (σ = ω = 0, u̇a = 0)
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How to describe isotropy

several ways, here 2 types of isotropy (e.g. found in FRW
cosmologies)

(1) Kinematic isotropy relative to u:
no preferred directions due to shear, vorticity and
acceleration (σ = ω = 0, u̇a = 0)

(2) Weyl isotropy:
Cabcd ≡ 0 ⇒ no principal null directions
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2. The framework of the Isotropic Past
Singularity
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Motivation: structure of an
example model

Kantowski-Sachs models: irrotational, geodesic perfect
fluid cosmologies with radiation equation of state p = 1

3
µ
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Motivation: structure of an
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Kantowski-Sachs models: irrotational, geodesic perfect
fluid cosmologies with radiation equation of state p = 1

3
µ

• initially isotropic, satisfy the Weyl Curvature Hypothesis
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Motivation: structure of an
example model

Kantowski-Sachs models: irrotational, geodesic perfect
fluid cosmologies with radiation equation of state p = 1

3
µ

• initially isotropic, satisfy the Weyl Curvature Hypothesis

metric given by

ds2 = −A(t)dt2 + t
[

A−1(t)dx2 + A2(t)b−2
(

dy2 + sin2 ydz2
)]

where

A(t) = 1 − 4b2t

9
, t > 0 and b = const
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Kantowski-Sachs models

interested in structure ⇒ rewrite the metric
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Kantowski-Sachs models

interested in structure ⇒ rewrite the metric

• choose cosmic time function T =
√

2t ⇒ dt2 = T 2dT 2

⇒ T > 0 ⇒ A(T ) = 1 − 4b̃2T
9
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Kantowski-Sachs models

interested in structure ⇒ rewrite the metric

• choose cosmic time function T =
√

2t ⇒ dt2 = T 2dT 2

⇒ T > 0 ⇒ A(T ) = 1 − 4b̃2T
9

ds2 = T 2
[

−A(T )dT 2 + A−1(T )dx̃2 + A2(T )b̃−2
(

dy2 + sin2 ydz2
)

]

= Ω2(T )ds̃2
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⇒ conformal transformation with Ω(T ) = T (conformal transf.

preserve light cone structure)
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Kantowski-Sachs models

interested in structure ⇒ rewrite the metric

• choose cosmic time function T =
√

2t ⇒ dt2 = T 2dT 2

⇒ T > 0 ⇒ A(T ) = 1 − 4b̃2T
9

ds2 = T 2
[

−A(T )dT 2 + A−1(T )dx̃2 + A2(T )b̃−2
(

dy2 + sin2 ydz2
)

]

= Ω2(T )ds̃2

⇒ conformal transformation with Ω(T ) = T (conformal transf.

preserve light cone structure)

• ds2 → 0 as T → 0+, but ds̃2 completely regular at T = 0 ⇒
singularity of physical ds2 absorbed in Ω(0) = 0
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Isotropic Past Singularity (IPS)

How do we encode Quiescent Cosmology and the Weyl
Curvature Hypothesis into the theory?
⇒ framework of the IPS (Goode and Wainwright 1985)
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Isotropic Past Singularity (IPS)

How do we encode Quiescent Cosmology and the Weyl
Curvature Hypothesis into the theory?
⇒ framework of the IPS (Goode and Wainwright 1985)

• Definition of an IPS relates phys. space-time (M,g) to
unphys. space-time (M̃, g̃) via conformal structure
g = Ω2 (T ) g̃, with

1. T cosmic time function on (M̃, g̃) and M open
submanifold T > 0.

2. regularity condition for g̃ on T = 0,

3. Ω (0) = 0 ⇒ causes IPS at T = 0, and

4. some general constraints on Ω(T ).
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Isotropic Past Singularity

• trick: move singular behaviour

into Ω(T ) ⇒ regularity of g̃

facilitates analysis of physical

quantities at IPS ⇒ analytical

advantage
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Isotropic Past Singularity

• trick: move singular behaviour

into Ω(T ) ⇒ regularity of g̃

facilitates analysis of physical

quantities at IPS ⇒ analytical

advantage

• among other implications,

definition guarantees

asymptotic initial isotropy and

compatibilty with the WCH

lim
T→0+

CabcdC
abcd

RefRef
= lim

T→0+

σ2

θ2
= lim

T→0+

ω2

θ2
= lim

T→0+

u̇au̇a

θ2
= 0
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3. Motivation for new definitions
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Future evolution?

• gravitational clumping increases
⇒ high-entropy state associated
with anisotropy
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Future evolution?

• gravitational clumping increases
⇒ high-entropy state associated
with anisotropy

• problem: numerous (isotropic)
FRW cosmologies admit IPS
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Future evolution?

• gravitational clumping increases
⇒ high-entropy state associated
with anisotropy

• problem: numerous (isotropic)
FRW cosmologies admit IPS

⇒ IPS framework not sufficient to
guarantee an anisotropic future
evolution ⇒ complementary
framework necessary
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Regular conformal structures and
(an)isotropy

• proved 2 theorems:

conformal structures with regular conformal metric

necessarily lead to asymptotic isotropy (valid for Ω → 0 or

Ω → ∞ and T → 0+ or T → 0−):

lim
T→0±

CabcdC
abcd

RefRef
= lim

T→0±

σ2

θ2
= lim

T→0±

ω2

θ2
= lim

T→0±

u̇au̇a

θ2
= 0
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Regular conformal structures and
(an)isotropy

• proved 2 theorems:

conformal structures with regular conformal metric

necessarily lead to asymptotic isotropy (valid for Ω → 0 or

Ω → ∞ and T → 0+ or T → 0−):

lim
T→0±

CabcdC
abcd

RefRef
= lim

T→0±

σ2

θ2
= lim

T→0±

ω2

θ2
= lim

T→0±

u̇au̇a

θ2
= 0

• important conclusion and justification of IPS definition:

if conformal structure g = Ω2 (T ) g̃ used in cosmology, then

1. regular conformal relation for the (isotropic) initial state

2. irregular conformal relation for the (anisotropic) final

state
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Motivation: Kantowski-Sachs
models

again interesting, because...
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Motivation: Kantowski-Sachs
models

again interesting, because...

• ... have previously been shown to admit an IPS
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Motivation: Kantowski-Sachs
models

again interesting, because...

• ... have previously been shown to admit an IPS

• ... admit anisotropic future behaviour

lim
T̄→0−

σ

θ
= o(1)

and...
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Evolution of the curvature invariants, RabR
ab and CabcdC

abcd,
in the Kantowski-Sachs models until the end of

(a rescaled) cosmic time
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0 

cosmic time T
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(logarithmic plot, the y-axis labels are unessential for our purposes and have been omitted).
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Evolution of the anisotropy-("gravitational
entropy")-measure, K = CabcdC

abcd/RabR
ab, in the

Kantowski-Sachs models

−1 −0.8 −0.6 −0.4 −0.2 0
0  

cosmic time T

K

(linear plot, the y-axis labels are unessential for our purposes and have been omitted).
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Conformal structure for a cosmological future in the

Kantowski-Sachs models

metric given by (comov. coords. )

ds2 = −A(t)dt2 + t
[

A−1(t)dx2 + A2(t)b−2
(

dy2 + sin2 ydz2
)]

where

A(t) = 1 − 4b2t

9
, t > 0 and b = const
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Conformal structure for a cosmological future in the

Kantowski-Sachs models

metric given by (comov. coords. )

ds2 = −A(t)dt2 + t
[

A−1(t)dx2 + A2(t)b−2
(

dy2 + sin2 ydz2
)]

where

A(t) = 1 − 4b2t

9
, t > 0 and b = const

• choose a cosmic time function T̄ s.t. T̄ ∈ (−1, 0)

T̄ = −A2 = −
(

1 − 4b2t
9

)2
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Kantowski-Sachs 2

• rewriting the metric and factoring out a common factor yields

ds2 =
1√
−T̄

[

− 81

64b4
dT̄ 2 +

(

1 −
√

−T̄
)

× 9

4b2

[

dx2 +
(

−T̄
)3/2

b−2
(

dy2 + sin2 ydz2
)

]

]
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Kantowski-Sachs 2

• rewriting the metric and factoring out a common factor yields

ds2 =
1√
−T̄

[

− 81

64b4
dT̄ 2 +

(

1 −
√

−T̄
)

× 9

4b2

[

dx2 +
(

−T̄
)3/2

b−2
(

dy2 + sin2 ydz2
)

]

]

• write Ω̄
(

T̄
)

= 1
(−T̄ )1/4 ⇒ new conformal transformation

g = Ω̄2
(

T̄
)

ḡ
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Kantowski-Sachs 2

• rewriting the metric and factoring out a common factor yields

ds2 =
1√
−T̄

[

− 81

64b4
dT̄ 2 +

(

1 −
√

−T̄
)

× 9

4b2

[

dx2 +
(

−T̄
)3/2

b−2
(

dy2 + sin2 ydz2
)

]

]

• write Ω̄
(

T̄
)

= 1
(−T̄ )1/4 ⇒ new conformal transformation

g = Ω̄2
(

T̄
)

ḡ

• 1. Ω̄ → +∞, as T̄ → 0− (new)

2. ḡ possesses vanishing determinant at T̄ = 0

⇒ ḡ becomes degenerate ⇒ ḡ not regular
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Kantowski-Sachs 2

• rewriting the metric and factoring out a common factor yields

ds2 =
1√
−T̄

[

− 81

64b4
dT̄ 2 +

(

1 −
√

−T̄
)

× 9

4b2

[

dx2 +
(

−T̄
)3/2

b−2
(

dy2 + sin2 ydz2
)

]

]

• write Ω̄
(

T̄
)

= 1
(−T̄ )1/4 ⇒ new conformal transformation

g = Ω̄2
(

T̄
)

ḡ

• 1. Ω̄ → +∞, as T̄ → 0− (new)

2. ḡ possesses vanishing determinant at T̄ = 0

⇒ ḡ becomes degenerate ⇒ ḡ not regular

• confirms earlier theorems and influences new definition
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4. New definitions and some implications
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Prerequisites
• definition involves more difficulties this time, due to

irregularity in conformal metric
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Prerequisites
• definition involves more difficulties this time, due to

irregularity in conformal metric

• necessary to define where T̄ = 0 since "outside" of
space-time ⇒ limiting causal future F+(M) ⇔ T̄ = 0

F+(M) :={p ∈ M̄ ⊃ M | ∃ a future inextendible causal

curve γp(s) : [0, a) → M, where a ∈ R
+ ∪ {∞},

s. t. p = γp(a) ≡ lim
s→a

γp(s)}
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Prerequisites
• definition involves more difficulties this time, due to

irregularity in conformal metric

• necessary to define where T̄ = 0 since "outside" of
space-time ⇒ limiting causal future F+(M) ⇔ T̄ = 0

F+(M) :={p ∈ M̄ ⊃ M | ∃ a future inextendible causal

curve γp(s) : [0, a) → M, where a ∈ R
+ ∪ {∞},

s. t. p = γp(a) ≡ lim
s→a

γp(s)}

• define causal degeneracy : The metric g is said to be
causally degenerate at p ∈ F+(M) if ∃ causal curve γp

with γ′

p 6= 0 which satisfies g(γ′

p, X) = 0 ∀ X ∈ TpM̄
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Anisotropic Future Singularity (AFS)

• Definition of an AFS relates phys. space-time (M,g) to

unphys. space-time (M, ḡ) via conformal structure

g = Ω̄2
(

T̄
)

ḡ, furthermore:

1. T̄ defined on M∪ F+(M) ⊂ M̄, T̄ cosmic time funtion

on M with range T̄ < 0, and T̄ = 0 on F+(M),

2. ḡ degenerate, but not causally degenerate on F+(M),

but ḡ remains C0,

3. lim
T̄→0−

Ω̄
(

T̄
)

= +∞, and other general constraints on Ω̄,

4. lim
T̄→0−

det(Ω̄2ḡ) = 0
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Anisotropic future singularity

• detg(0) = det ḡ(0) = 0

causes singularity for

both (M,g) and (M, ḡ)
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Anisotropic future singularity

• detg(0) = det ḡ(0) = 0

causes singularity for

both (M,g) and (M, ḡ)

• however: conformal

space-time "more

regular" than physical

space-time

⇒ analytically helpful
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Other example cosmologies, some characteristics

Model future singularity? anisotropic future Ω̄(0) regular ḡ ? detg(0)

rad. FRW (k = +1) yes no 0 yes 0

dust FRW (k = +1) yes no 0 yes 0

Szekeres (subclass) no yes +∞ no +∞

Mars (3rd type) no yes +∞ no +∞

Carneiro-Marugan no yes +∞ no +∞

Kantowski no yes +∞ no +∞

Kantowski-Sachs yes yes +∞ no 0
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Other example cosmologies, some characteristics

Model future singularity? anisotropic future Ω̄(0) regular ḡ ? detg(0)

rad. FRW (k = +1) yes no 0 yes 0

dust FRW (k = +1) yes no 0 yes 0

Szekeres (subclass) no yes +∞ no +∞

Mars (3rd type) no yes +∞ no +∞

Carneiro-Marugan no yes +∞ no +∞

Kantowski no yes +∞ no +∞

Kantowski-Sachs yes yes +∞ no 0

⇒ there should exist other definitions ⇒ need definition for anisotropic
ever expanding unverse
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Anisotropic future endless universe (AFEU)

• same conditions as for

AFS, except that now

det(Ω̄2
ḡ) → ∞ (1)
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Anisotropic future endless universe (AFEU)

• same conditions as for

AFS, except that now

det(Ω̄2
ḡ) → ∞ (2)

• det(Ω̄2ḡ) → ∞ causes

diverging 4-volume form

for (M,g), while

det ḡ(0) = 0 causes sin-

gularity for (M, ḡ)
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Anisotropic future endless universe (AFEU)

• same conditions as for

AFS, except that now

det(Ω̄2
ḡ) → ∞ (3)

• det(Ω̄2ḡ) → ∞ causes

diverging 4-volume form

for (M,g), while

det ḡ(0) = 0 causes sin-

gularity for (M, ḡ)

• no physical singularity for

physical space-time, but

singularity for conformal

space-time
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Physics of an AFS and an AFEU
• irregularity complicates analysis ⇒ different approaches

needed to derive physical results
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Physics of an AFS and an AFEU
• irregularity complicates analysis ⇒ different approaches

needed to derive physical results

• 1. AFS: conditions of definition imply lim inf
T̄→0−

θ ≤ 0 and θ < 0

for some T̄ ∈ (−c, 0), c > 0, and for a wide class of cases

lim inf
T̄→0−

θ = −∞ ⇒ emphasises recollapse

2. AFEU: conditions of definition imply lim inf
T̄→0−

θ ≥ 0 and

θ > 0 for some T̄ ∈ (−c, 0) ⇒ emphasises indefinite

expansion
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Physics of an AFS and an AFEU
• irregularity complicates analysis ⇒ different approaches

needed to derive physical results

• 1. AFS: conditions of definition imply lim inf
T̄→0−

θ ≤ 0 and θ < 0

for some T̄ ∈ (−c, 0), c > 0, and for a wide class of cases

lim inf
T̄→0−

θ = −∞ ⇒ emphasises recollapse

2. AFEU: conditions of definition imply lim inf
T̄→0−

θ ≥ 0 and

θ > 0 for some T̄ ∈ (−c, 0) ⇒ emphasises indefinite

expansion

• analysed example cosmologies show:

both definitions admit a great variety of (anisotropic) future

behaviours
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Strong Curvature and Jacobi
fields

• Jacobi fields J i represent displacement vectors between

neighbouring geodesics and satisfy geodesic deviation eqn.

∇2
γ′J

i = R
(

γ′, J i
)

γ′
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Strong Curvature and Jacobi
fields

• Jacobi fields J i represent displacement vectors between

neighbouring geodesics and satisfy geodesic deviation eqn.

∇2
γ′J

i = R
(

γ′, J i
)

γ′

• timelike geodesic γ : [0, ts) → M, ts ∈ R
+ ∪ {∞}, define

spacelike 3-volume via Jacobi fields V (s) = J1 ∧ J2 ∧ J3
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Strong Curvature and Jacobi
fields

• Jacobi fields J i represent displacement vectors between

neighbouring geodesics and satisfy geodesic deviation eqn.

∇2
γ′J

i = R
(

γ′, J i
)

γ′

• timelike geodesic γ : [0, ts) → M, ts ∈ R
+ ∪ {∞}, define

spacelike 3-volume via Jacobi fields V (s) = J1 ∧ J2 ∧ J3

• definition of a Tipler Strong Curvature Singularity (TSCS)

requires physical objects to be crushed to zero:

lim inf
s→ts

V (s) = 0

⇒ end of space-time
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Strong Curvature at an AFS (IPS)

• using continuity and degeneracy condition of ḡ on F+(M)

theorems provide sufficient conditions

1. for T̄ = 0 to be a TSCS for the conformal space-time

2. for the AFS to be a TSCS
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Strong Curvature at an AFS (IPS)

• using continuity and degeneracy condition of ḡ on F+(M)

theorems provide sufficient conditions

1. for T̄ = 0 to be a TSCS for the conformal space-time

2. for the AFS to be a TSCS

• emphasises definition of an AFS

• similar theorems show for the first time:

IPS is a TSCS for causal geodesics
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Conclusion
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Conclusion
• IPS framework not sufficient ⇒ new framework necessary

• theorems ⇒ emphasise IPS and imply irregular conformal

structure for anisotropy

• analysed example cosmologies as guidance

• provided new framework via defs. of the AFS and the AFEU

• derived some phys. implications (e.g. θ, strong curvature...)

• conjecture: combination of the IPS with the AFS and the

AFEU provides first version of a complete formalisation of

Quiescent Cosmology

Encoding Cosmological Futures with Conformal Structures – p. 34



Future research

a number of open questions...
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Future research

a number of open questions...

• complete discussion of anisotropy in new definitions

• further examination of curvature at the AFS

• analyse combination of the IPS with the AFS and the AFEU

• etc ...
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