Encoding Cosmological Futures with Conformal Structures

Susan M. Scott

Philipp Höhn

Centre for Gravitational Physics The Australian National University 17 December 2009

Encoding Cosmological Futures with Conformal Structures – p.

Outline

- 1. Background: Isotropy, Quiescent Cosmology...
- 2. Framework of an Isotropic Past Singularity
- 3. Motivation for a framework for cosmological futures
- 4. New definitions and their implications

1. Background: Isotropy, Quiescent Cosmology...

Observations: universe is isotropic in our observable vicinity

Encoding Cosmological Futures with Conformal Structures - p.

universe initially highly irregular and chaotic
 avoids too stringent initial constraints

- universe initially highly irregular and chaotic
 avoids too stringent initial constraints
- irregularities smoothed out by dissipation

- universe initially highly irregular and chaotic
 avoids too stringent initial constraints
- irregularities smoothed out by dissipation
- according to this picture: universe appears isotropic, as we happen to live at a somewhat *late stage* of its evolution

- universe initially highly irregular and chaotic
 avoids too stringent initial constraints
- irregularities smoothed out by dissipation
- according to this picture: universe appears isotropic, as we happen to live at a somewhat *late stage* of its evolution
- however: problems with dissipation and entropy

Alternative

Quiescent Cosmology (Barrow 1978)

- lack of chaos in infant universe
 ⇒ initially matter in thermal equil.
 ⇒ entropy apparently high
 - nevertheless: entropy rise due to anomalous behaviour of gravitational entropy \Rightarrow increases with clumping \Rightarrow maximal in a black hole (maximally clumpy object) $S_{BH} \propto M^2$

Alternative

Quiescent Cosmology (Barrow 1978)

- lack of chaos in infant universe
 ⇒ initially matter in thermal equil.
 ⇒ entropy apparently high
 - nevertheless: entropy rise due to anomalous behaviour of gravitational entropy \Rightarrow increases with clumping \Rightarrow maximal in a black hole (maximally clumpy object) $S_{BH} \propto M^2$

 universe evolved away from regularity due to gravitational attraction ⇒ clumping to stars, galaxies etc. accounts for entropy increase

- universe evolved away from regularity due to gravitational attraction ⇒ clumping to stars, galaxies etc. accounts for entropy increase
- initial state: low degree of clumping \Rightarrow isotropy

- universe evolved away from regularity due to gravitational attraction ⇒ clumping to stars, galaxies etc. accounts for entropy increase
- initial state: low degree of clumping \Rightarrow isotropy

hypothesis for the initial low-entropy constraint (Penrose 1979)

grav. entropy \Leftrightarrow grav. clumping \Leftrightarrow Weyl tensor C_{abcd} Weyl curvature is bounded, e.g. matter dominated

$$\lim_{T \to 0^+} \frac{C_{abcd} C^{abcd}}{R_{ef} R^{ef}} = 0.$$

- universe evolved away from regularity due to gravitational attraction ⇒ clumping to stars, galaxies etc. accounts for entropy increase
- initial state: low degree of clumping \Rightarrow isotropy

hypothesis for the initial low-entropy constraint (Penrose 1979)

grav. entropy \Leftrightarrow grav. clumping \Leftrightarrow Weyl tensor C_{abcd} Weyl curvature is bounded, e.g. matter dominated

$$\lim_{T \to 0^+} \frac{C_{abcd} C^{abcd}}{R_{ef} R^{ef}} = 0.$$

 universe appears isotropic, because we happen to live at an early stage of its evolution

Summary of quiescent cosmology for the initial state

- thermal equilibrium and C_{abcd} bounded
- \Rightarrow spatial isotropy and homogeneity at *Big Bang*
- $\Rightarrow\,$ initial singularity must have been "isotropic" as in the FRW models

Cosmological fluid flow and kinematics

∃ (timelike) velocity vector field u in space-time (M,g), representing average matter movement

Cosmological fluid flow and kinematics

- ∃ (timelike) velocity vector field u in space-time (M,g), representing average matter movement
- define kinematic quantities expansion θ , shear σ , vorticity ω and acceleration $\dot{u}^a := u^a{}_{;b}u^b$ - via covar. deriv. of u

expansion θ , shear σ and vorticity ω of the fluid

calculated via derivatives of u

How to describe isotropy

several ways, here 2 types of isotropy (e.g. found in FRW cosmologies)

How to describe isotropy

several ways, here 2 types of isotropy (e.g. found in FRW cosmologies)

(1) Kinematic isotropy relative to u:

no preferred directions due to shear, vorticity and acceleration ($\sigma = \omega = 0$, $\dot{u}^a = 0$)

How to describe isotropy

several ways, here 2 types of isotropy (e.g. found in FRW cosmologies)

- (1) Kinematic isotropy relative to u: no preferred directions due to shear, vorticity and acceleration ($\sigma = \omega = 0, \dot{u}^a = 0$)
- (2) Weyl isotropy:

 $C_{abcd} \equiv 0 \Rightarrow$ no principal null directions

2. The framework of the Isotropic Past Singularity

Encoding Cosmological Futures with Conformal Structures - p. 1

Motivation: structure of an example model

Kantowski-Sachs models: irrotational, geodesic perfect fluid cosmologies with radiation equation of state $p = \frac{1}{3}\mu$

Motivation: structure of an example model

Kantowski-Sachs models: irrotational, geodesic perfect fluid cosmologies with radiation equation of state $p = \frac{1}{3}\mu$

initially isotropic, satisfy the Weyl Curvature Hypothesis

Motivation: structure of an example model

Kantowski-Sachs models: irrotational, geodesic perfect fluid cosmologies with radiation equation of state $p = \frac{1}{3}\mu$

initially isotropic, satisfy the Weyl Curvature Hypothesis

metric given by

$$ds^{2} = -A(t)dt^{2} + t\left[A^{-1}(t)dx^{2} + A^{2}(t)b^{-2}\left(dy^{2} + \sin^{2}ydz^{2}\right)\right]$$

where

$$A(t) = 1 - \frac{4b^2t}{q}, t > 0 \text{ and } b = const$$

interested in structure \Rightarrow rewrite the metric

interested in structure \Rightarrow rewrite the metric

• choose cosmic time function $T = \sqrt{2t} \Rightarrow dt^2 = T^2 dT^2$ $\Rightarrow T > 0 \Rightarrow A(T) = 1 - \frac{4\tilde{b}^2 T}{9}$

interested in structure \Rightarrow rewrite the metric

• choose cosmic time function $T = \sqrt{2t} \Rightarrow dt^2 = T^2 dT^2$ $\Rightarrow T > 0 \Rightarrow A(T) = 1 - \frac{4\tilde{b}^2 T}{9}$

$$ds^{2} = T^{2} \left[-A(T)dT^{2} + A^{-1}(T)d\tilde{x}^{2} + A^{2}(T)\tilde{b}^{-2} \left(dy^{2} + \sin^{2} y dz^{2} \right) \right]$$

= $\Omega^{2}(T)d\tilde{s}^{2}$

interested in structure \Rightarrow rewrite the metric

• choose cosmic time function $T = \sqrt{2t} \Rightarrow dt^2 = T^2 dT^2$ $\Rightarrow T > 0 \Rightarrow A(T) = 1 - \frac{4\tilde{b}^2 T}{9}$

$$ds^{2} = T^{2} \left[-A(T)dT^{2} + A^{-1}(T)d\tilde{x}^{2} + A^{2}(T)\tilde{b}^{-2} \left(dy^{2} + \sin^{2} y dz^{2} \right) \right]$$

= $\Omega^{2}(T)d\tilde{s}^{2}$

 \Rightarrow conformal transformation with $\Omega(T) = T$ (conformal transf. preserve light cone structure)

interested in structure \Rightarrow rewrite the metric

• choose cosmic time function $T = \sqrt{2t} \Rightarrow dt^2 = T^2 dT^2$ $\Rightarrow T > 0 \Rightarrow A(T) = 1 - \frac{4\tilde{b}^2 T}{9}$

$$ds^{2} = T^{2} \left[-A(T)dT^{2} + A^{-1}(T)d\tilde{x}^{2} + A^{2}(T)\tilde{b}^{-2} \left(dy^{2} + \sin^{2} y dz^{2} \right) \right]$$

= $\Omega^{2}(T)d\tilde{s}^{2}$

 \Rightarrow conformal transformation with $\Omega(T) = T$ (conformal transf. preserve light cone structure)

• $ds^2 \rightarrow 0$ as $T \rightarrow 0^+$, but $d\tilde{s}^2$ completely regular at $T = 0 \Rightarrow$ singularity of physical ds^2 absorbed in $\Omega(0) = 0$

Isotropic Past Singularity (IPS)

How do we encode Quiescent Cosmology and the Weyl Curvature Hypothesis into the theory?

 \Rightarrow framework of the *IPS* (Goode and Wainwright 1985)

Isotropic Past Singularity (IPS)

How do we encode Quiescent Cosmology and the Weyl Curvature Hypothesis into the theory?

 \Rightarrow framework of the *IPS* (Goode and Wainwright 1985)

- Definition of an *IPS* relates phys. space-time $(\mathcal{M}, \mathbf{g})$ to unphys. space-time $(\tilde{\mathcal{M}}, \tilde{\mathbf{g}})$ via conformal structure $\mathbf{g} = \Omega^2 (T) \tilde{\mathbf{g}}$, with
 - 1. T cosmic time function on $(\tilde{\mathcal{M}}, \tilde{\mathbf{g}})$ and \mathcal{M} open submanifold T > 0.
 - 2. regularity condition for $\tilde{\mathbf{g}}$ on T = 0,
 - 3. $\Omega(0) = 0 \Rightarrow$ causes *IPS* at T = 0, and
 - 4. some general constraints on $\Omega(T)$.

Isotropic Past Singularity

• trick: move singular behaviour into $\Omega(T) \Rightarrow$ regularity of \tilde{g} facilitates analysis of physical quantities at IPS \Rightarrow analytical advantage

Isotropic Past Singularity

- trick: move singular behaviour into $\Omega(T) \Rightarrow$ regularity of \tilde{g} facilitates analysis of physical quantities at IPS \Rightarrow analytical advantage
- among other implications,
 definition guarantees
 asymptotic initial isotropy and
 compatibility with the WCH

$$\lim_{T \to 0^+} \frac{C_{abcd} C^{abcd}}{R_{ef} R^{ef}} = \lim_{T \to 0^+} \frac{\sigma^2}{\theta^2} = \lim_{T \to 0^+} \frac{\omega^2}{\theta^2} = \lim_{T \to 0^+} \frac{\dot{u}^a \dot{u}_a}{\theta^2} = 0$$

3. Motivation for new definitions
Future evolution?

gravitational clumping increases
 high-entropy state associated
 with anisotropy

Future evolution?

- gravitational clumping increases
 ⇒ high-entropy state associated with anisotropy
- problem: numerous (isotropic)
 FRW cosmologies admit IPS

Encoding Cosmological Futures with Conformal Structures - p. 18

Future evolution?

- gravitational clumping increases
 ⇒ high-entropy state associated with anisotropy
- problem: numerous (isotropic)
 FRW cosmologies admit IPS
- $\Rightarrow IPS framework not sufficient to$ guarantee an anisotropic future $evolution <math display="block">\Rightarrow complementary$ framework necessary

Regular conformal structures and (an)isotropy

proved 2 theorems:

conformal structures with regular conformal metric necessarily lead to asymptotic isotropy (valid for $\Omega \to 0$ or $\Omega \to \infty$ and $T \to 0^+$ or $T \to 0^-$):

$$\lim_{T \to 0^{\pm}} \frac{C_{abcd} C^{abcd}}{R_{ef} R^{ef}} = \lim_{T \to 0^{\pm}} \frac{\sigma^2}{\theta^2} = \lim_{T \to 0^{\pm}} \frac{\omega^2}{\theta^2} = \lim_{T \to 0^{\pm}} \frac{\dot{u}^a \dot{u}_a}{\theta^2} = 0$$

Regular conformal structures and (an)isotropy

proved 2 theorems:

conformal structures with regular conformal metric necessarily lead to asymptotic isotropy (valid for $\Omega \to 0$ or $\Omega \to \infty$ and $T \to 0^+$ or $T \to 0^-$):

$$\lim_{T \to 0^{\pm}} \frac{C_{abcd} C^{abcd}}{R_{ef} R^{ef}} = \lim_{T \to 0^{\pm}} \frac{\sigma^2}{\theta^2} = \lim_{T \to 0^{\pm}} \frac{\omega^2}{\theta^2} = \lim_{T \to 0^{\pm}} \frac{\dot{u}^a \dot{u}_a}{\theta^2} = 0$$

- important conclusion and justification of IPS definition: if conformal structure $\mathbf{g} = \Omega^2 (T) \tilde{\mathbf{g}}$ used in cosmology, then
 - 1. regular conformal relation for the (isotropic) initial state
 - 2. irregular conformal relation for the (anisotropic) final state

Motivation: Kantowski-Sachs models

again interesting, because...

Motivation: Kantowski-Sachs models

again interesting, because...

… have previously been shown to admit an IPS

Motivation: Kantowski-Sachs models

again interesting, because...

- … have previously been shown to admit an IPS
- ... admit anisotropic future behaviour

$$\lim_{\bar{T}\to 0^-}\frac{\sigma}{\theta}=o(1)$$

and...

Evolution of the curvature invariants, $R_{ab}R^{ab}$ and $C_{abcd}C^{abcd}$, in the Kantowski-Sachs models until the end of (a rescaled) cosmic time

(logarithmic plot, the y-axis labels are unessential for our purposes and have been omitted).

Encoding Cosmological Futures with Conformal Structures - p. 2

Evolution of the anisotropy-("gravitational entropy")-measure, $K = C_{abcd}C^{abcd}/R_{ab}R^{ab}$, in the Kantowski-Sachs models

(linear plot, the y-axis labels are unessential for our purposes and have been omitted).

Conformal structure for a cosmological future in the Kantowski-Sachs models

metric given by (comov. coords.)

$$ds^{2} = -A(t)dt^{2} + t \left[A^{-1}(t)dx^{2} + A^{2}(t)b^{-2} \left(dy^{2} + \sin^{2} y dz^{2}\right)\right]$$
 where

$$A(t) = 1 - \frac{4b^2t}{9}, t > 0 \text{ and } b = const$$

Encoding Cosmological Futures with Conformal Structures - p. 2

Conformal structure for a cosmological future in the Kantowski-Sachs models

metric given by (comov. coords.)

$$ds^{2} = -A(t)dt^{2} + t \left[A^{-1}(t)dx^{2} + A^{2}(t)b^{-2} \left(dy^{2} + \sin^{2} y dz^{2}\right)\right]$$
 where

$$A(t) = 1 - \frac{4b^2t}{9}, t > 0 \text{ and } b = const$$

• choose a cosmic time function \overline{T} s.t. $\overline{T} \in (-1, 0)$ $\overline{T} = -A^2 = -\left(1 - \frac{4b^2t}{9}\right)^2$

• rewriting the metric and factoring out a common factor yields

$$ds^{2} = \frac{1}{\sqrt{-\bar{T}}} \left[-\frac{81}{64b^{4}} d\bar{T}^{2} + \left(1 - \sqrt{-\bar{T}}\right) \right]$$
$$\times \frac{9}{4b^{2}} \left[dx^{2} + \left(-\bar{T}\right)^{3/2} b^{-2} \left(dy^{2} + \sin^{2} y dz^{2}\right) \right]$$

• rewriting the metric and factoring out a common factor yields

$$ds^{2} = \frac{1}{\sqrt{-\bar{T}}} \left[-\frac{81}{64b^{4}} d\bar{T}^{2} + \left(1 - \sqrt{-\bar{T}}\right) \right]$$
$$\times \frac{9}{4b^{2}} \left[dx^{2} + \left(-\bar{T}\right)^{3/2} b^{-2} \left(dy^{2} + \sin^{2} y dz^{2}\right) \right]$$

• write $\overline{\Omega}(\overline{T}) = \frac{1}{(-\overline{T})^{1/4}} \Rightarrow$ new conformal transformation $\mathbf{g} = \overline{\Omega}^2(\overline{T}) \, \overline{\mathbf{g}}$

rewriting the metric and factoring out a common factor yields

$$ds^{2} = \frac{1}{\sqrt{-\bar{T}}} \left[-\frac{81}{64b^{4}} d\bar{T}^{2} + \left(1 - \sqrt{-\bar{T}}\right) \right]$$
$$\times \frac{9}{4b^{2}} \left[dx^{2} + \left(-\bar{T}\right)^{3/2} b^{-2} \left(dy^{2} + \sin^{2} y dz^{2}\right) \right]$$

• write $\bar{\Omega}(\bar{T}) = \frac{1}{(-\bar{T})^{1/4}} \Rightarrow$ new conformal transformation $\mathbf{g} = \bar{\Omega}^2(\bar{T}) \bar{\mathbf{g}}$

• 1. $\overline{\Omega} \to +\infty$, as $\overline{T} \to 0^-$ (new)

2. $\bar{\mathbf{g}}$ possesses vanishing determinant at $\bar{T} = 0$ $\Rightarrow \bar{\mathbf{g}}$ becomes degenerate $\Rightarrow \bar{\mathbf{g}}$ not regular

rewriting the metric and factoring out a common factor yields

$$ds^{2} = \frac{1}{\sqrt{-\bar{T}}} \left[-\frac{81}{64b^{4}} d\bar{T}^{2} + \left(1 - \sqrt{-\bar{T}}\right) \right]$$
$$\times \frac{9}{4b^{2}} \left[dx^{2} + \left(-\bar{T}\right)^{3/2} b^{-2} \left(dy^{2} + \sin^{2} y dz^{2}\right) \right]$$

• write $\bar{\Omega}(\bar{T}) = \frac{1}{(-\bar{T})^{1/4}} \Rightarrow$ new conformal transformation $\mathbf{g} = \bar{\Omega}^2(\bar{T}) \, \bar{\mathbf{g}}$

• 1. $\overline{\Omega} \to +\infty$, as $\overline{T} \to 0^-$ (new)

2. $\bar{\mathbf{g}}$ possesses vanishing determinant at $\bar{T} = 0$

 $\Rightarrow \bar{\mathbf{g}} \text{ becomes degenerate} \Rightarrow \bar{\mathbf{g}} \text{ not regular}$

confirms earlier theorems and influences new definition

4. New definitions and some implications

Prerequisites

 definition involves more difficulties this time, due to irregularity in conformal metric

Prerequisites

- definition involves more difficulties this time, due to irregularity in conformal metric
- necessary to define where $\overline{T} = 0$ since "outside" of space-time \Rightarrow *limiting causal future* $F^+(\mathcal{M}) \Leftrightarrow \overline{T} = 0$

 $F^{+}(\mathcal{M}) := \{ p \in \overline{\mathcal{M}} \supset \mathcal{M} \mid \exists \text{ a future inextendible causal} \\ \text{curve } \gamma_{p}(s) : [0, a) \to \mathcal{M}, \text{ where } a \in \mathbb{R}^{+} \cup \{\infty\}, \\ \text{s. t. } p = \gamma_{p}(a) \equiv \lim_{s \to a} \gamma_{p}(s) \}$

Prerequisites

- definition involves more difficulties this time, due to irregularity in conformal metric
- necessary to define where $\overline{T} = 0$ since "outside" of space-time \Rightarrow *limiting causal future* $F^+(\mathcal{M}) \Leftrightarrow \overline{T} = 0$

 $F^{+}(\mathcal{M}) := \{ p \in \overline{\mathcal{M}} \supset \mathcal{M} \mid \exists \text{ a future inextendible causal} \\ \text{curve } \gamma_{p}(s) : [0, a) \to \mathcal{M}, \text{ where } a \in \mathbb{R}^{+} \cup \{\infty\}, \\ \text{s. t. } p = \gamma_{p}(a) \equiv \lim_{s \to a} \gamma_{p}(s) \}$

• define <u>causal degeneracy</u>: The metric g is said to be causally degenerate at $p \in F^+(\mathcal{M})$ if \exists causal curve γ_p with $\gamma'_p \neq 0$ which satisfies $\mathbf{g}(\gamma'_p, X) = 0 \forall X \in T_p \overline{\mathcal{M}}$ Anisotropic Future Singularity (AFS)

- Definition of an *AFS* relates phys. space-time $(\mathcal{M}, \mathbf{g})$ to unphys. space-time $(\mathcal{M}, \mathbf{\bar{g}})$ via conformal structure $\mathbf{g} = \bar{\Omega}^2 (\bar{T}) \, \mathbf{\bar{g}}$, furthermore:
 - 1. \overline{T} defined on $\mathcal{M} \cup F^+(\mathcal{M}) \subset \overline{\mathcal{M}}$, \overline{T} cosmic time function on \mathcal{M} with range $\overline{T} < 0$, and $\overline{T} = 0$ on $F^+(\mathcal{M})$,
 - 2. $\underline{\overline{g}}$ degenerate, but not causally degenerate on $F^+(\mathcal{M})$, but \overline{g} remains C^0 ,
 - 3. $\lim_{\bar{T}\to 0^{-}} \bar{\Omega}(\bar{T}) = +\infty$, and other general constraints on $\bar{\Omega}$,
 - 4. $\lim_{\bar{T}\to 0^-} \det(\bar{\Omega}^2 \mathbf{\bar{g}}) = 0$

Anisotropic future singularity

• $\det \mathbf{g}(0) = \det \mathbf{\overline{g}}(0) = 0$ causes singularity for <u>both</u> $(\mathcal{M}, \mathbf{g})$ and $(\mathcal{M}, \mathbf{\overline{g}})$

Encoding Cosmological Futures with Conformal Structures - p. 28

Anisotropic future singularity

- $\det \mathbf{g}(0) = \det \mathbf{\overline{g}}(0) = 0$ causes singularity for <u>both</u> $(\mathcal{M}, \mathbf{g})$ and $(\mathcal{M}, \mathbf{\overline{g}})$
- however: conformal space-time "more regular" than physical space-time
 ⇒ analytically helpful

 \bar{T}_f \bar{T}_f $\lim_{\bar{T}\to\bar{T}_f^-}\bar{\Omega}(\bar{T})=+\infty$ $\det \mathbf{g}(\bar{T}_f) = 0$ $\mathbf{g} = \bar{\Omega}^2(\bar{T})\bar{\mathbf{g}}$ $\bar{\mathbf{u}}$ u (\mathcal{M},\mathbf{g}) $(\mathcal{M}, \bar{\mathbf{g}})$ Physical space-time Unphysical space-time

Encoding Cosmological Futures with Conformal Structures - p. 2

Other example cosmologies, some characteristics

Model	future singularity?	anisotropic future	$ar{\Omega}(0)$	regular $\bar{\mathbf{g}}$?	$\det \mathbf{g}(0)$
rad. FRW ($k = +1$)	yes	no	0	yes	0
dust FRW ($k = +1$)	yes	no	0	yes	0
Szekeres (subclass)	no	yes	$+\infty$	no	$+\infty$
Mars (3rd type)	no	yes	$+\infty$	no	$+\infty$
Carneiro-Marugan	no	yes	$+\infty$	no	$+\infty$
Kantowski	no	yes	$+\infty$	no	$+\infty$
Kantowski-Sachs	yes	yes	$+\infty$	no	0

Other example cosmologies, some characteristics

Model	future singularity?	anisotropic future	$ar{\Omega}(0)$	regular $\bar{\mathbf{g}}$?	$\det \mathbf{g}(0)$
rad. FRW ($k = +1$)	yes	no	0	yes	0
dust FRW ($k = +1$)	yes	no	0	yes	0
Szekeres (subclass)	no	yes	$+\infty$	no	$+\infty$
Mars (3rd type)	no	yes	$+\infty$	no	$+\infty$
Carneiro-Marugan	no	yes	$+\infty$	no	$+\infty$
Kantowski	no	yes	$+\infty$	no	$+\infty$
Kantowski-Sachs	yes	yes	$+\infty$	no	0

 \Rightarrow there should exist other definitions \Rightarrow need definition for anisotropic ever expanding unverse

Anisotropic future endless universe (AFEU)

 same conditions as for AFS, except that now

 $\det(\bar{\Omega}^2 \mathbf{\bar{g}}) \to \infty$

Anisotropic future endless universe (AFEU)

 same conditions as for AFS, except that now

 $\det(\bar{\Omega}^2 \bar{\mathbf{g}}) \to \infty$

• $det(\bar{\Omega}^2 \bar{\mathbf{g}}) \to \infty$ causes diverging 4-volume form for $(\mathcal{M}, \mathbf{g})$, while $det \bar{\mathbf{g}}(0) = 0$ causes singularity for $(\mathcal{M}, \bar{\mathbf{g}})$

Anisotropic future endless universe (AFEU)

 same conditions as for AFS, except that now

 $\det(\bar{\Omega}^2 \bar{\mathbf{g}}) \to \infty$

- $det(\bar{\Omega}^2 \bar{\mathbf{g}}) \to \infty$ causes diverging 4-volume form for $(\mathcal{M}, \mathbf{g})$, while $det \bar{\mathbf{g}}(0) = 0$ causes singularity for $(\mathcal{M}, \bar{\mathbf{g}})$
- no physical singularity for physical space-time, but singularity for conformal space-time

$$\begin{array}{c} \bar{T}_{f} \\ \hline{\Gamma} \rightarrow \bar{T}_{f}^{-} \\ \hline{\Pi} \qquad \bar{T} \rightarrow \bar{T}_{f}^{-} \\ \hline{\Pi} \qquad \bar{T} \rightarrow \bar{T}_{f}^{-} \\ \hline{\Pi} \qquad \bar{T} \rightarrow \bar{T}_{f}^{-} \\ \mathbf{g} = \bar{\Omega}^{2}(\bar{T}) \bar{\mathbf{g}} \\ \mathbf{g} = \bar{\Omega}^{2}(\bar{T}) \bar{\mathbf{g}} \\ \hline{\mathbf{u}} \\ \hline{\mathbf{u$$

Physics of an AFS and an AFEU

 irregularity complicates analysis ⇒ different approaches needed to derive physical results

Physics of an AFS and an AFEU

- irregularity complicates analysis ⇒ different approaches needed to derive physical results
- 1. AFS: conditions of definition imply $\liminf_{\bar{T}\to 0^-} \theta \leq 0$ and $\theta < 0$ for some $\bar{T} \in (-c, 0)$, c > 0, and for a wide class of cases $\liminf_{\bar{T}\to 0^-} \theta = -\infty \Rightarrow$ emphasises recollapse
 - 2. AFEU: conditions of definition imply $\liminf_{\bar{T}\to 0^-} \theta \ge 0$ and $\theta > 0$ for some $\bar{T} \in (-c, 0) \Rightarrow$ emphasises indefinite expansion

Physics of an AFS and an AFEU

- irregularity complicates analysis ⇒ different approaches needed to derive physical results
- 1. AFS: conditions of definition imply $\liminf_{\bar{T}\to 0^-} \theta \leq 0$ and $\theta < 0$ for some $\bar{T} \in (-c, 0)$, c > 0, and for a wide class of cases $\liminf_{\bar{T}\to 0^-} \theta = -\infty \Rightarrow$ emphasises recollapse
 - 2. AFEU: conditions of definition imply $\liminf_{\overline{T}\to 0^-} \theta \ge 0$ and $\theta > 0$ for some $\overline{T} \in (-c, 0) \Rightarrow$ emphasises indefinite expansion
- analysed example cosmologies show: both definitions admit a great variety of (anisotropic) future behaviours

Strong Curvature and Jacobi fields

 Jacobi fields Jⁱ represent displacement vectors between neighbouring geodesics and satisfy geodesic deviation eqn.

 $\nabla_{\gamma'}^2 J^i = R\left(\gamma', J^i\right)\gamma'$

Strong Curvature and Jacobi fields

 Jacobi fields Jⁱ represent displacement vectors between neighbouring geodesics and satisfy geodesic deviation eqn.

$$\nabla_{\gamma'}^2 J^i = R\left(\gamma', J^i\right)\gamma'$$

• timelike geodesic $\gamma : [0, t_s) \to \mathcal{M}, t_s \in \mathbb{R}^+ \cup \{\infty\}$, define spacelike 3-volume via Jacobi fields $V(s) = J_1 \wedge J_2 \wedge J_3$

Strong Curvature and Jacobi fields

 Jacobi fields Jⁱ represent displacement vectors between neighbouring geodesics and satisfy geodesic deviation eqn.

$$\nabla_{\gamma'}^2 J^i = R\left(\gamma', J^i\right)\gamma'$$

- timelike geodesic $\gamma : [0, t_s) \to \mathcal{M}, t_s \in \mathbb{R}^+ \cup \{\infty\}$, define spacelike 3-volume via Jacobi fields $V(s) = J_1 \wedge J_2 \wedge J_3$
- definition of a *Tipler Strong Curvature Singularity* (TSCS) requires physical objects to be crushed to zero:
 lim inf V(s) = 0
 ⇒ end of space-time

Strong Curvature at an AFS (IPS)

- using continuity and degeneracy condition of g on F⁺(M) theorems provide sufficient conditions
 - 1. for $\overline{T} = 0$ to be a TSCS for the conformal space-time
 - 2. for the AFS to be a TSCS

Strong Curvature at an AFS (IPS)

- using continuity and degeneracy condition of g on F⁺(M) theorems provide sufficient conditions
 - 1. for $\overline{T} = 0$ to be a TSCS for the conformal space-time
 - 2. for the AFS to be a TSCS
- emphasises definition of an AFS
Strong Curvature at an AFS (IPS)

- using continuity and degeneracy condition of g on F⁺(M) theorems provide sufficient conditions
 - 1. for $\overline{T} = 0$ to be a TSCS for the conformal space-time
 - 2. for the AFS to be a TSCS
- emphasises definition of an AFS
- similar theorems show for the first time: IPS is a TSCS for <u>causal</u> geodesics

IPS framework not sufficient ⇒ new framework necessary

- IPS framework not sufficient ⇒ new framework necessary
- theorems ⇒ emphasise IPS and imply irregular conformal structure for anisotropy

- IPS framework not sufficient ⇒ new framework necessary
- theorems ⇒ emphasise IPS and imply irregular conformal structure for anisotropy
- analysed example cosmologies as guidance

- IPS framework not sufficient ⇒ new framework necessary
- theorems ⇒ emphasise IPS and imply irregular conformal structure for anisotropy
- analysed example cosmologies as guidance
- provided new framework via defs. of the AFS and the AFEU

- IPS framework not sufficient \Rightarrow new framework necessary
- theorems ⇒ emphasise IPS and imply irregular conformal structure for anisotropy
- analysed example cosmologies as guidance
- provided new framework via defs. of the AFS and the AFEU
- derived some phys. implications (e.g. θ , strong curvature...)

- IPS framework not sufficient \Rightarrow new framework necessary
- theorems ⇒ emphasise IPS and imply irregular conformal structure for anisotropy
- analysed example cosmologies as guidance
- provided new framework via defs. of the AFS and the AFEU
- derived some phys. implications (e.g. θ , strong curvature...)
- <u>conjecture</u>: combination of the IPS with the AFS and the AFEU provides first version of a complete formalisation of Quiescent Cosmology

a number of open questions...

complete discussion of anisotropy in new definitions

- complete discussion of anisotropy in new definitions
- further examination of curvature at the AFS

- complete discussion of anisotropy in new definitions
- further examination of curvature at the AFS
- analyse combination of the IPS with the AFS and the AFEU

- complete discussion of anisotropy in new definitions
- further examination of curvature at the AFS
- analyse combination of the IPS with the AFS and the AFEU
- etc ...

References

- S. W. Goode and J. Wainwright, *Isotropic Singularities in Cosmological Models*, Class. Quantum Grav., 2, 99, 1985
- [2] R. Penrose, Singularities and Time-Asymmetry, General Relativity: An Einstein Centenary Survey, ed. S. W. Hawking and W. Israel, Cambridge University Press, pp 581-638, 1979
- [3] S. M. Scott and G. Ericksson, *Cosmological Models with Isotropic Singularities*, Proc. Int. Sem. Math. Cosmol., Potsdam 1998, ed. M. Rainer and H.-J. Schmidt, World Scientific Singapore, pp 123-132, 1998
- [4] P. Höhn and S. M. Scott, Quiescent Cosmology and the Final State of the Universe, IJMPD, 17, 571, 2008
- [5] P. Höhn and S. M. Scott, *Encoding Cosmological Futures with Conformal Structures*, Class. Quantum Grav., **26**, 035019, 2009 [CQG Highlight of 2008 and 2009]