Luminosity distance tests of an inhomogeneous cosmological model

Peter Smale

Department of Physics and Astronomy University of Canterbury, NZ

ACGRG5 2009, Dec. 16–18, Christchurch, New Zealand

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Outline

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Motivation

Explaining the SNe Ia observations A quantitative inhomogeneous cosmological model

2 SNe la

Results: SNe la distance moduli "out of the box" Recalibrating the distances

3 Gamma ray bursts

Results: A GRB Hubble diagram

High-Z¹ & SCP²

Deviation from EdS expansion: How?

- Dark energy
 Std GR invalid at large scales
- Universe is not homogeneous and isotropic

・ロン ・雪 と ・ ヨ と ・ ヨ と

ъ

High-Z¹ & SCP²

Deviation from EdS expansion: How?

- Dark energy
- 2 Std GR invalid at large scales
- Universe is not homogeneous and isotropic

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

High-Z¹ & SCP²

Deviation from EdS expansion: How?

- Dark energy
- 2 Std GR invalid at large scales
- Oniverse is not homogeneous and isotropic

・ロン ・四 と ・ ヨ と ・ ヨ と

ъ

High-Z¹ & SCP²

Deviation from EdS expansion: How?

- Dark energy
- 2 Std GR invalid at large scales
- Universe is not homogeneous and isotropic

・ロット (雪) ・ (日) ・ (日)

э

High-Z¹ & SCP²

Deviation from EdS expansion: How?

- Dark energy
- 2 Std GR invalid at large scales
- Universe is not homogeneous and isotropic

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

The timescape.

An inhomogeneous cosmological model (Wiltshire, 2007)³

- Statistical homogeneity on scales $\gg 100 h^{-1}$ Mpc
- Back-reaction (variance of the expansion rate) \leq 5% during structure formation
- A two-scale average of the resulting inhomogeneous structure in the universe
 - Walls : spatially flat, gravitationally bound regions
 - Voids : expanding underdense regions
- The variation in clock rates between walls and voids gives rise to apparent cosmic acceleration ("Timescape")
- Luminosity distance d_L is function of present void fraction f_{V0} and the (dressed) Hubble constant H_0 .

SNe la Hubble diagram.

= 900

SNe la data reduction methods

Brighter-broader, brighter-bluer

(日) (日) (日) (日) (日) (日) (日)

 $\begin{array}{l} \text{MLCS (High-Z)} \\ \text{Use nearby well-observed SNe to create light curve templates.} \\ \mathbf{m}_X(t-t_0) = \mathbf{M}_X^0 + \mu_0 + \zeta_X \Big(\alpha_X + \frac{\beta_X}{R_V} \Big) A_V^0 + \mathbf{P_X} \Delta + \mathbf{Q_X} \Delta^2. \\ \text{Fit observed light curves to redshifted templates to get} \\ \Delta \text{ (light curve shape variation),} \\ A_V \text{ (host-galaxy extinction parameter),} \\ \mu_0 \text{ (distance modulus).} \\ \text{Milky Way-like reddening law: } R_V = 3.1 \end{array}$

SALT (SCP)

Find *s* and *c* for *each* SN by fitting to synthetic fiducial template. Marginalize over $\mathcal{M}(h, M)$, α and β for *all* SN to obtain distance estimator: $\mu_B = m_B^* - \mathcal{M} + \alpha(s-1) - \beta c$ assumes cosmological model

Comparison with given distance moduli "out of the box".

Timescape

Dataset	Ν	χ^2	Ω_{M0}	f_{v0}	Method
⁴ Riess Gold 07	182	162.7	$0.33^{+0.11}_{-0.16}$	$0.77\substack{+0.12 \\ -0.09}$	MLCS2k2
	307	319.6	$0.09\substack{+0.16 \\ -0.09}$	$0.94\substack{+0.06\\-0.12}$	SALT
Constitution	397	470.8	$0.01^{+0.18}_{-0.01}$	$0.99\substack{+0.01\\-0.12}$	SALT
MLCS17	372	403.1	$0.20^{+0.11}_{-0.17}$		MLCS2k2
MLCS31	366	432.8	$0.03\substack{+0.12\\-0.00}$	$1.00\substack{+0.00\\-0.08}$	MLCS2k2
SALT2		346.8	$0.04^{+0.18}_{-0.04}$	$0.97\substack{+0.03\\-0.13}$	SALT2

ΛCDM

102111					
	Dataset	N	χ^2	Ω_{M0}	Method
	Union*	307	310.8	$0.29\substack{+0.05 \\ -0.04}$	SALT
Cons	titution**	397		$0.28^{+0.04}_{-0.02}$	SALT

*Kowalski et al., 2008 ⁶; **Hicken et al., 2009⁷ (with BAO prior)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Comparison with given distance moduli "out of the box".

Timescape

Dataset	Ν	χ^2	Ω_{M0}	f_{v0}	Method
⁴ Riess Gold 07	182	162.7	$0.33^{+0.11}_{-0.16}$	$0.77^{+0.12}_{-0.09}$	MLCS2k2
⁵ Union	307	319.6	$0.09^{+0.16}_{-0.09}$	$0.94^{+0.06}_{-0.12}$	SALT
Constitution	397	470.8	$0.01\substack{+0.18\\-0.01}$	$0.99\substack{+0.01\\-0.12}$	SALT
MLCS17	372	403.1	$0.20^{+0.11}_{-0.17}$		MLCS2k2
MLCS31	366	432.8	$0.03\substack{+0.12\\-0.00}$	$1.00\substack{+0.00\\-0.08}$	MLCS2k2
SALT2		346.8	$0.04^{+0.18}_{-0.04}$	$0.97\substack{+0.03\\-0.13}$	SALT2

∧CDM				
Dataset	Ν	χ^2	Ω_{M0}	Method
Union*	307	310.8	$0.29\substack{+0.05\\-0.04}$	SALT
Constitution**	397		$0.28\substack{+0.04 \\ -0.02}$	SALT

*Kowalski et al., 2008 ⁶; **Hicken et al., 2009⁷ (with BAO prior)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Comparison with given distance moduli "out of the box".

Timescape

Dataset	Ν	χ^2	Ω_{M0}	f_{V0}	Method
⁴ Riess Gold 07	182	162.7	$0.33^{+0.11}_{-0.16}$	$0.77^{+0.12}_{-0.09}$	MLCS2k2
⁵ Union	307	319.6	$0.09\substack{+0.16\\-0.09}$	$0.94\substack{+0.06\\-0.12}$	SALT
Constitution	397	470.8	$0.01\substack{+0.18\-0.01}$	$0.99\substack{+0.01\\-0.12}$	SALT
MLCS17	372	403.1	$0.20^{+0.11}_{-0.17}$	$0.86\substack{+0.12\\-0.08}$	MLCS2k2
MLCS31	366	432.8	$0.03\substack{+0.12 \\ -0.00}$	$1.00\substack{+0.00\\-0.08}$	MLCS2k2
SALT2	352	346.8	$0.04\substack{+0.18\\-0.04}$	$0.97\substack{+0.03\\-0.13}$	SALT2

∧*CDM*

Dataset	Ν	χ^2	Ω_{M0}	Method
Union*	307	310.8	$0.29\substack{+0.05\\-0.04}$	SALT
Constitution**	397		$0.28\substack{+0.04 \\ -0.02}$	SALT

*Kowalski et al., 2008 ⁶; **Hicken et al., 2009⁷ (with BAO prior)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Why the deviations?

...depending on which methods are used, the derived distances can change, sometimes in a systematic way $^{\rm 8}$

Riess Gold - Constitution

• Need to recalibrate: $\mu_{\Lambda CDM} \rightarrow \mu_{TS}$

Recalibrating the distances.

nmescape						
Data	aset	Ν	χ^2	Ω_{M0}	f_{v0}	Method
Riess Gold	1 70 t	82	162.7	$0.33^{+0.11}_{-0.16}$	$0.77\substack{+0.12 \\ -0.09}$	MLCS2k2
U	nion 3	307	319.6	$0.09\substack{+0.16 \\ -0.09}$	$0.94\substack{+0.06 \\ -0.12}$	SALT
	ion* 3	307				SALT
Constitu	tion 3	397	470.8	$0.01\substack{+0.18\-0.01}$	$0.99\substack{+0.01\\-0.12}$	SALT
	ion* 3	397				SALT

∧*CDM*

T:....

Dataset	Ν	χ^2	Ω_{M0}	Method
Union	307	310.8	$0.29^{+0.05}_{-0.04}$	SALT
Union*	307	344.1	$0.28^{+0.03}_{-0.03}$	SALT
Constitution	397		$0.28^{+0.04}_{-0.02}$	SALT
Constitution*	397	314.3	$0.29^{+0.03}_{-0.03}$	SALT

*Supernova Legacy Survey⁹

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Recalibrating the distances.

Ν	χ^2	Ω _{M0}	f_{V0}	Method
182	162.7	$0.33\substack{+0.11\-0.16}$	$0.77\substack{+0.12 \\ -0.09}$	MLCS2k2
307	319.6	$0.09\substack{+0.16 \\ -0.09}$	$0.94\substack{+0.06\\-0.12}$	SALT
307	350.6	$0.13^{+0.10}_{-0.08}$	$0.88\substack{+0.06\\-0.61}$	SALT
397	470.8	$0.01\substack{+0.18\-0.01}$	$0.99\substack{+0.01\\-0.12}$	SALT
397	319.6	$0.12^{+0.10}_{-0.08}$	$0.91\substack{+0.06 \\ -0.06}$	SALT
	N 182 307 307 397 397	N χ^2 182162.7307319.6307 350.6 397470.8397319.6	N χ^2 Ω_{M0} 182162.7 $0.33^{+0.11}_{-0.16}$ 307319.6 $0.09^{+0.16}_{-0.09}$ 307 350.6 $0.13^{+0.10}_{-0.08}$ 397470.8 $0.01^{+0.18}_{-0.01}$ 397319.6 $0.12^{+0.10}_{-0.08}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

∧*CDM*

Dataset	Ν	χ^2	Ω_{M0}	Method
Union	307	310.8	$0.29\substack{+0.05\\-0.04}$	SALT
Union*	307	344.1	$0.28^{+0.03}_{-0.03}$	SALT
Constitution	397		$0.28\substack{+0.04\\-0.02}$	SALT
Constitution*	397	314.3	$0.29^{+0.03}_{-0.03}$	SALT

*Supernova Legacy Survey⁹

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Systematic uncertainties.

(ロ) (同) (三) (三) (三) (○) (○)

Increasing the number of SNe in the Hubble diagram may not be as important as reducing the systematic uncertainties¹⁰

- Photometry
- Distance estimation
 - K-corrections
 - Extinction/reddening
- SN evolution?
- Gravitational lensing
- Malmquist bias
- Cuts (Hubble bubble?)
- Method-dependent systematics: e.g. SALT has greater scatter at high z than MLCS⁷

Systematic uncertainties.

(ロ) (同) (三) (三) (三) (○) (○)

Increasing the number of SNe in the Hubble diagram may not be as important as reducing the systematic uncertainties¹⁰

- Photometry
- Distance estimation
 - K-corrections
 - Extinction/reddening
- SN evolution?
- Gravitational lensing
- Malmquist bias
- Cuts (Hubble bubble?)
- Method-dependent systematics: e.g. SALT has greater scatter at high z than MLCS⁷

A Gamma ray burst Hubble Diagram?

GRBs are standardizable candles too! (Well, maybe)

 GRBs could extend HD range out to matter-dominated regime (GRB 090423: z = 8.2)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

A Gamma ray burst Hubble Diagram After Schaefer (2007)¹¹

Summary

(ロ) (同) (三) (三) (三) (○) (○)

- SNe Ia: Different results depending on reduction method.
- Although in principle we have sufficient SNe Ia data to distinguish between models, systematic uncertainties have to be understood before conclusions can be drawn.
- GRB "lever arm" could distinguish between models with better data....

References and acknowledgements

¹Riess, A. et al., Astron. J, 1998, 116, 1009
²Perlmutter, S. et al., Ap. J, 1997, 483, 565-581
³Wiltshire, D., New J. Phys, 2007, 9, 1-66
⁴Leith, B. et al., Ap. J, 672, L91-L94, 2008
⁵Kwan, J. et al., Arxiv preprint 0902.4249, 2009
⁶Kowalski, M. et al., Arxiv preprint 0804.4142, 2008
⁷Hicken, M. et al., Ap. J, 2009, 700, 1097-1140
⁸Leibundgut, B., GRG, 2008, 40, 221-248
⁹http://gold.astro.utoronto.ca/conley/simple_cosfitter
¹⁰Knop, R. et al., Arxiv preprint 0309368, 2003
¹¹Schaefer, B., Ap. J, 2007, 660, 16

This work is funded by a UoC doctoral scholarship