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Spacetimes of constant curvature
e Spacetime is conformally flat when its line element can be written in the form
Gab = Nap (1)
where 1 is the flat metric and €2 is conformal factor.

e Spacetime is of constant curvature when the Riemman tensor everywhere satisfies

Rabcd — 11_2R(gacgbd - gadgbc) )

whence it follows that Ricci scalar is R = 4A.

According to the signum of the cosmological constant A we can distinguish

e Minkowski spacetime: A = 0

e de Sitter spacetime: A > 0

e anti-de Sitter spacetime: A < 0
We can write these spacetimes in the form (1), namely

—dt? + da? + dy? + d2?
1+ &(—2+ 2%+ + 22)]
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(anti-)de Sitter spacetime
We may visualize (anti-)de Sitter spacetime as a 4-dimensional hyperboloid
~ 23+ 23+ Z5+ 7: +0Z; = oa”

in flat 5-dimensional space
d82 = —dZ()2 + le2 + dZ22 + ng2 + UdZ42 ,

where a = % and o is signum of cosmological constant A.

For A > 0, the de Sitter hyperboloid (2) is naturaly spanned by ¢, x, 6 and ¢
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Metric in these coordinates takes the form
{
ds? = —dt? + a? cosh? - [dx2 + sin? x(d#* + sin® 9d¢2)} :
a

where t € (—00,+00), x € (0,7), 8 € (0,7) and ¢ € [0,27) (the section t = const. is a 3-sphere).
Worldlines with constant y, 6 and ¢ are timelike geodesics.
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Impulsive spherical gravitational waves

Expanding impulsive spherical gravitational waves can be constructed by the Penrose "cut and paste” method
[Penrose (1972)], i. e. "cutting” a spacetime along a null cone and " putting it together” with a suitable warp:

1+ ehh
UV 3y o, (3)
A+ cZ 2 "

The impulse is located on the hypersurface U = 0, which is a sphere expanding with the speed of light
(2 +y? + 2% =17).

Z,2,V,U=0_],, =|hZ),n2),

Figure 1: Geometrical interpretation of the Penrose junction conditions (3): mapping in the complex plane Z — h(Z) gives a mapping
of points on the Riemann sphere from P~ — P*.

Continuous metric which describes such waves is
[Hogan (1992, 1993, 1994), Podolsky and Griffiths (1999)]

_ _2
2 ‘%dZ L U6 (U)pHdZ’ +2dUAV — 26dD?
ds* =

?

(14 AUV —eU)]?
where
p=1+4+¢ZZ, e=—1,0,41.



Relation of the continuous coordinates to the conformally flat coordinates of the background

e behind the impulse: U < 0
1% Z7

A
V. =——€U, U =—>Vv-u, (=-V.
p p p
e in front of the impulse: U > 0
VT=AV — DU |,
UT=BV — EU ,
(t=CV - FU ,
where the parameters A, B, C, D, E a F are functions of Z resp. Z, namely
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Refraction formulae of geodesics in conformally flat coordinates

Suppose C'! geodesics Z = Z(7), U =U(7) and V = V(7).
Denote the positions and velocities in the interaction time 7; as

We will apply above two different transformations in front of and behind the impulse and we express

v (Zi, Vi) i (Z, Vi, U, Vi, Z) , ete.for  y, 97, 27, &7, t, L,
and
Zi(xl yf 20t Vilel Lyt 2t ) Uiz, 20 65, a0, 0, 47,60
|G T AN S R AN A ) BT C R VAN AN S S A AN A

It follows that:
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Now it is straightforward to write the interaction parameters behind the impulse as functions of the parameters
in front the of impulse. We obtain:

e for positions

747 7 -7
x;zlhll +—$Z_-|—, yz_zlhl‘ _y;_’

h+h h—nh

77 —1 27 4+1
——=In + t— = 1h t 4
< | |‘h‘2_1zz ) ) ‘ ‘|h|2+12 ) ()

e for velocities

07 =a,i) + by + et + doty
g)i_:ayi;“ "‘by?);r +Cy?3f "‘dyi;r 5
i =a,ai + by i+ dA (5)
tl_:CltLU;’— —f— bty;— —f— Ct,é;— —f— dtt:_ s

where the coefficients a, b, ¢, d are (complicated) functions of Z and h(Z).



Refraction formulae

We may now define angles which characterize positions and velocity directions in (x, z) and (y, z) planes:

e o and y* describe position of the particle

e 3% and §* describe inclination of the velocity vector
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Figure 2: Geometrical meaning of angles characterizing position of the particle and inclination of its velocity in (x, z) plane. Superscript
+ denotes quantities in front of the impulse, and — behind the impulse.



Then, the formulae for positions (4) and veocities (5) can be rewritten in the form

(|Z2—1)Reh .

ta = t
cot v ReZ ([ = 1) cota™ |
C(ZP=ymmh

t = t
O T Tz (a1 T

and

vl (a, tan BT + by tan ot + ¢;) + d,
vi(a,tan 5 + b, tandt +c¢,) + d,

tan 0 =

9

v (a,tan Bt + b, tandt +¢,) + d,

tand =
a vi(a,tan BT 4+ b, tan ot + ¢,) + d,

where we introduced velocities with respect to the frame

R
+ + .+ LY, %

(v v ,00) = | =, 5, =
T Yy Yz ) T t':taij:at‘i :



Example: impulsive spherical wave generated by a snapping cosmic string

In this case, the complex mapping h(Z) is
WZ) =270,

where ¢ characterizes deficit angle given by the presence of cosmic string outside the impulse:

Figure 3: Mapping Z — h(Z) = Z'~° in the complex plane (on the left) coresponds to a wedge in the Riemann sphere (on the right).
The deficit angle is 279.
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The ring of particles standing in front of impulse
Now we can apply our general formulae (6) and (7) to the special case:
e wave is generated by the snapping string: h(Z) = Z'~°
e particles are standing in (x%,27) plane: tT =¢yT =2t =0and y™ =

This assumption leads to the motion only in (z, z) plane (i.e. y~ = 0).

For relevant coefficients in the velocity transformation (5) we obtain

—5(1-%) B
dx:m (Z g —+ Z(S ) ,
=g (129 (20 7 4 5 (20— 77

Therefore, the changes of angles are

s Z2—1
Z Z2—26_1

cota = cota™ |

_5(1 _ g) (21—5 + Z5—1)
(1—2)° (20— 2-9) + & (720 — 70-2)

tan 0~ =
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Figure 4: Shift of the position of particle induced by the wave: o~ (a™). The curves corespond to different values of the deficit angle:
§=0, 0.1, 0.2...0.8.
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Figure 5: Dependence of velocity vector inclination on particle’s position in front of impulse: 3~ (a™). The curves corespond to different
values of the deficit angle: 6 = 0.1, 0.2...0.8.
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Figure 6: Shift of particle’s position and change of magnitude and inclination of its velocity vector for § = 0.2.
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Figure 7: Velocity vector magnitude as a function of particle’s position in front of impulse: |[v~|(«™). The curves corespond to different
values of the deficit angle: § = 0.1, 0.2...0.8. The magnitude of the velocity vector is [v™| = \/v;* + v >
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Alternative form of the refraction formulae when A £ 0

For the change of positions and velocities of test particles in 5-dimensional representation of (anti-)de Sitter
spacetime we obtain

77 +1 77 —1
- 1! - ! T
ZOz_‘h ‘lhlg Z()z ) Zli - |h |‘h‘2 le )
7+ 7 7 —7
Z=W|S~ 225 2z = W|—=2f
h+h h—h
Ly=a = ZL ,
and
Zy, ay by ¢ dy w, Zy;
Zs,; ay by ¢y dy wy Z?j;
Zn | =1 a b, ¢ d. w, ZE |,
Z& a¢ bt Ct dt Wt ZS;
Zy; 0O 0 0 0 1 ZZ

where w; = —5- (a;Z5; + bjZ4; + ¢; 25 + d; Zg; — Z5;) and j = t,z, 2, y.
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Example: Comoving particles in de Sitter spacetime

The global parametrization of de Sitter spacetime as an expanding 3-sphere is
.t
Zy=asinh — |
a

t .
Z1=a cosh —sin y cos @ ,
a

Zo=a cosh —sin y sinf cos ¢ ,
a

Z3=a cosh —sin xy sin#sin ¢ ,
a

t
Z4=acosh — cos y .
a

We can apply previous equations to comoving particles in this parametrization, i. e. particles with
X = const. , 0" = const. , ¢t = const. ,

or . .
yt=0, 6" =0, ¢"=0.

This worldlines are timelike geodesics.
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Location of the impulse

In the continuous coordinates, impulse is located on the hypersurface U = 0 which in the de Sitter background
corresponds to

Zy=a, resp. 72+ 752 + Z?,Q:ZO2 :

t
cosh —cos y=1 .
a

Location of cosmic string is given by the condition Z;; =0, i. e.

Zy Zs o
osoT  smot :acoshzsmx sinf" =0 . (8)

+
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Figure 8: Cosmic string and the impulse in de Sitter space with coordinates Z;, Z5 a Z,. The space is scaled on the unit sphere with
¢ suppressed. The string lies on meridians @ = 0, 7 while the impulse propagates from the north pole (x = 0) in time ¢t = 0 to the

™

equator (x = ) in time ¢ = oo.
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Effect of the impulse on comoving particles in de Sitter space

Figure 9: De Sitter space scaled on the unit sphere with 5-dimensional velocity vectors of comoving particles in front of impulse (on
the left) and 5-dimensional velocity vectors of the same particles behind the impulse (on the right).
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Figure 10: Velocity vectors of particles behind the impulse, with substracted comoving part in front of the impulse (de Sitter space is
scaled on the unit sphere).
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Conclusions

complete description of the influence of expanding spherical impulsive gravitational waves on free test
particles in spacetimes of constant curvature

generalization previous results for Minkowski to any cosmological constant (de Sitter, anti-de Sitter universe)

derivation of general refraction formulae describing shift of positions and change of velocity vectors of these
particles

investigation and visualization of the effect of the impulsive wave generated by a snapping cosmic string
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