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About this Manual

This book describes the organization and usage of object files and images that are built on Tru64 UNIX
systems.

Audience

This manual is targeted for compiler and debugger writers and other developers who must access or
manipulate object files. A familiarity with basic program development and symbol table concepts is
assumed.

Necessity

This is a new manual designed to fill a need for technical information for back-end developers working on
the Tru64 UNIX operating system. It supplements or replaces information that has been previously
available in the Assembly Language Programmer's Guide.

Organization

This manual is organized as follows:

Chapter 1
Provides background information on the development environment and describes the
high-level organization and usage of object files.

Chapter 2 Describes the header sections of the object file.

Chapter 3 Describes the contents of the "raw data" sections of the object file.

Chapter 4 Describes the relocation process and related structures stored in the object file.

Chapter 5 Describes the symbol table.

Chapter 6 Describes the object file sections containing dynamic loading information.

Chapter 7 Describes the format and usage of the object file comment section (.comment).

Chapter 8 Describes the archive file format.

Chapter 9 Provides examples that illustrate symbol table representations.

Related Documents

This manual discusses the object file format from the perspectives of tools that produce or use object files.
Understanding the purpose of these tools is a prerequisite, but this info is touched upon briefly in this
document. The primary source for information on system programs in the development environment is the
Programmer's Guide. The default debugger on Tru64 UNIX is the ladebug debugger, which is treated
separately in the Ladebug Debugger Manual.



The contents of object files are also tied to the Alpha architectural implementation. The Assembly
Language Programmer's Guide provides an architectural overview that focuses on assembly-level
instructions and directives. Architectural documentation is also available in the Alpha Architecture
Reference Manual.

The Calling Standard for Alpha Systems also contains material related to this manual. The calling standard
defines the interface and other requirements for procedure calls on Alpha platforms.

The Documentation Overview, Glossary, and Master Index provides information on all of the books in the
Tru64 UNIX documentation set.

Reader's Comments

Compaq welcomes any comments and suggestions you have on this and other Tru64 UNIX manuals.

You can send your comments in the following ways:

• Fax: 603-884-0120 Attn: UBPG Publications, ZK03-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader's Comment form is located on your system in the following location:

/usr/doc/readers_comment.txt

• Mail:

Compaq Computer Corporation
UBPG Publications Manager
ZK03-3/Y32
110 Spit Brook Road
Nashua, NH 03062-9987

A Reader's Comment form is located in the back of each printed manual.  The form is postage paid if
you mail it in the United States.

Please include the following information along with your comments:

• The full title of the book and the order number.  (The order number is printed on the title page of this
book and on its back cover.)

• The section numbers and page numbers of the information on which you are commenting.

• The version of  Tru64 UNIX that you are using.

• If known, the type of processor that is running the Tru64 UNIX software.

The Tru64 UNIX Publications group cannot respond to system problems or technical support inquiries.
Please address technical questions to your local system vendor or to the appropriate Compaq technical
support office.  Information provided with the software media explains how to send problem reports to
Compaq.

Conventions

This document uses the following typographic and symbol conventions:



%
$

A percent sign represents the C shell system prompt. A dollar sign represents the system prompt for the
Bourne and Korn shells.

#

A number sign represents the superuser prompt.

% cat

Boldface type in interactive examples indicates typed user input.

file

Italic (slanted) type indicates variable values, placeholders, and function argument names.

[ | ]
{ | }

In syntax definitions, brackets indicate items that are optional and braces indicate items that are
required. Vertical bars separating items inside brackets or braces indicate that you choose one item
from among those listed.

. . .

In syntax definitions, a horizontal ellipsis indicates that the preceding item can be repeated one or more
times.

cat(1)

A cross-reference to a reference page includes the appropriate section number in parentheses. For
example, cat(1) indicates that you can find information on the cat command in Section 1 of the
reference pages.



24

1. Introduction

The Tru64 UNIX Object File/Symbol Table Format Specification is the official definition of the object file
and symbol table formats used for Tru64 UNIX object files. It also describes the legal uses of the formats
and their interpretation.

This document treats in detail the file formats for object files and archive files. These files are described as
follows:

Object File

An object file is a binary file produced by a compiler, assembler, and/or linker from high-level-
language source files or other object files. Object files can be executable programs, shared libraries, or
relocatable object files. One or more relocatable object files can be linked together to form executable
programs or shared libraries.

Symbol Table

A symbol table is contained within an object file.  It is used to convey linking and debugging
information describing the contents of the object file.

Archive File

An archive file is a single file which contains many object or text files that are managed as a group.
Archive files can serve as libraries that are searched by the linker. A special symbol table is included in
the archive file for this purpose. The archiver (ar(1)) is the tool used to create and update archive
files.

Tools that create, use, or otherwise interact with object or archive files should conform to the formatting
and usage conventions outlined in this specification.

1.1. Definitions

This section defines terms that are used throughout this document.

address

If not otherwise specified, an address is a location in virtual memory.

alignment

The positioning of data items or object file sections in memory so that the starting address is evenly
divisible by a given factor.

absolute file offset

See file offset.

API

Application Programming Interface.

application
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A user-level program.

base address

The lowest-numbered location of an object file mapped in virtual memory.

byte boundary

The alignment factor.

common storage class symbol

A global symbol that can be legally multiply defined. Storage space for common storage class symbols
is typically allocated when relocatable object files are linked.

constant

A variable or value that cannot be overwritten.

dynamic executable

A call-shared application or program. A dynamic executable is linked with shared libraries and loaded
by the dynamic loader.

dynamic loader

A system program that maps dynamic executables and shared libraries into virtual memory so that they
can be executed.

entry point

The first instruction that is executed in a program or procedure.

executable

An object file that can be executed. Also referred to as a program, image, or executable object.
Executables can be static or dynamic.

file offset

The distance in bytes from the beginning of an on-disk file to an item within the file. Also referred to
as an absolute file offset.

hashing

A search technique typically used in performance-sensitive programs.

image

A program mapped in memory for execution. A shared process image includes mappings of shared
libraries used by the program.

linker

The system utility ld. This utility is the primary producer of executable object files and shared
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libraries.

literal

A value represented directly.

locally stripped

Stripped of local symbol information.

namespace

A scope within which symbol names should all be unique.

preemption

A mechanism by which all references to a multiply defined symbol are resolved to the same instance
of the symbol.

relative file offset

The distance in bytes from a given position in an on-disk file to another item within the file.

relative index

An index represented as an offset from a base index.

relocatable object

An object file that includes the information required to link it with other object files.

section

The primary unit of an object file.

segment

A portion of an object file that consists of one or more sections and can be loaded into virtual memory.

shared library

An object file that provides routines and data used by one or more dynamic executables.

shared object

A dynamic executable or shared library.

static executable

An object file that contains all of the executable code and data required to create a runnable program
image.
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1.2. History and Applicability

The object file format described in this specification originated from the System V COFF (Common Object
File Format). Implementation-dependent varieties of the COFF format are used on many UNIX systems.
Tru64 UNIX has altered and extended the object file format to serve as the basis for program development
on Alpha systems. This extended version of COFF is referred to in this document as eCOFF.

All systems based on the Alpha architecture and running Tru64 UNIX employ the eCOFF object file
format.

1.3. Producers and Consumers

Many tools interact with objects and archives in the development environment. Object file producers create
object files, and object file consumers read object files. A tool may be both a producer and a consumer.
Figure 1-1 provides one view of the program development process from source files through executable
object file production.

Figure 1-1 Object File Producers and Consumers

A summary of the functions of relevant system utilities and their relationship to objects and archives
follows. Detailed information is available in reference pages.

1.3.1. Compilers

Compilers are programs that translate source code into either intermediate code that can be processed by an
assembler or an object file that can be processed by the linker (or executed directly). Accordingly,
compilers may be direct or indirect producers of object files, depending on the compilation system. The
compiler creates the initial symbol table.

1.3.2. Assemblers

Assemblers also produce object files. An assembler converts a compiler's output from assembly language
(the intermediate form) into binary machine language. The result is traditionally a non-executable object
file (.o file). The assembler lays out the sections of the object file and assigns data elements and code to
the various sections. It also lays the groundwork for the relocation process performed by linkers.
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1.3.3. Linkers

A linker (or link-editor) accepts one or more object files as input and produces another object file, which
may be an executable program. The linker performs relocation fixups and symbol resolution. It merges
symbolic information and searches for referenced symbols in shared libraries and archive libraries. Linkers
are producers and consumers of object files, and consumers of archive files.

The selection of command-line options determines what type of object the linker produces. A final link
produces an executable object file or shared library. A partial link produces a relocatable object that can be
included in a future link.

1.3.4. Loaders

Loaders (sometimes referred to as dynamic linkers) load executable object files and shared libraries into
system memory for execution. A loader may perform dynamic relocation and dynamic symbol resolution.
It may also provide run-time support for loading and unloading shared objects and on-the-fly symbol
resolution. The loader is a consumer of executable object files and shared libraries.

1.3.5. Debuggers

Debuggers are utilities designed to assist programmers in pinpointing errors in their programs. Debuggers
are object file consumers, and they rely heavily on the debug symbol table information contained in object
files.

1.3.6. Object Instrumentation Tools

Object instrumentation tools are both consumers and producers of object files. Their input is an executable
object and, possibly, the shared libraries used by that executable object. Their output is the instrumented
version of the executable program. Instrumentation involves modifying the application by adding calls to
analysis procedures at basic block, procedure, or instruction boundaries. Depending on the tool, the aim
may be to optimize the program or gather data to enable future optimizations.

1.3.6.1. Post-Link Optimizers

The om object modification tool is an object transformation tool that performs post-link optimizations such
as removal of unneeded instructions and data. om's input is a specially linked object file produced by the
linker, and its output is a modified executable object file.

The cord tool is a post-link tool that rearranges procedures in an executable file to facilitate improved
cache mapping.

These tools are object file consumers and producers.

1.3.6.2. Profiling Tools

UNIX profiling tools (such as Compaq's programmable profiling and program analysis tool, Atom) are
object file producers and consumers. These tools examine an executable object and the shared libraries it
uses and report information such as basic block counts and procedure calling hierarchies. They may also
restructure the program to improve performance. Output includes files that store profiling data generated
during execution of the instrumented application.
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1.3.7. Archivers

An archiver is a tool that produces and maintains archive files. It is a producer and a consumer of archive
files and a consumer of object files.

1.3.8. Miscellaneous Object Tools

1.3.8.1. Object Dumpers

Tools are available that read object files and dump (print) their contents in human-readable form. Examples
are nm, odump, stdump, and dis. These tools are object file consumers.

1.3.8.2. Object Manipulators

The tools ostrip and strip reduce the size of an object file by removing certain portions of the file.
The mcs tool modifies the comment section only. These tools are both consumers and producers of object
files.

1.4. Object File Overview

1.4.1. Main Components of Object Files

This document is organized to correspond to a conceptual breakdown of an object file's contents. The main
components of an object file are described briefly in the remainder of this section.

A high-level view of the eCOFF object file contents is depicted in Figure 1-2.

Figure 1-2 Object File Contents

1.4.1.1. Object File Headers

Header structures serve as a roadmap for navigating portions of the object file. They provide information
about the size, location, and status of various sections and about the object as a whole.  See Chapter 2 for
more information.
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1.4.1.2. Instructions and Data

Instructions and data are located in loadable segments of the object file. Instructions consist of all
executable code. Data consists of uninitialized and initialized data, constants, and literals. Instructions and
data are laid out in sections that are arranged into segments. The segments are then loaded to form part of
the program's final image in memory.  See Chapter 3 for more information.

1.4.1.3. Object File Relocation Information

The purpose of relocation is to defer writing the address-dependent contents of an object file until link time.
Relocation entries are created by the compiler and assembler, and the necessary address adjustments are
calculated by the linker. Information relevant to relocation is stored in section relocation entries and in the
symbol table. In some instances, the loader subsequently performs dynamic relocation.  See Chapter 4 and
Chapter 6 for more details.

1.4.1.4. Symbol Table

The symbol table contains information that describes the contents of an object file. Linkers rely on symbol
table information to resolve references between object files. Debuggers use symbol table information to
provide users with a source language view of a program's execution and its execution image.  See Chapter 5
for more details.

1.4.1.5. Dynamic Loading Information

Dynamic sections are utilized by the loader to create a process image for an executable object. These
sections are present in shared object files only. Information is included to enable dynamic symbol
resolution, dynamic relocation, and quickstarting of programs.  See Chapter 6 for more details.

1.4.1.6. Comment Section

The comment section is a non-loadable section of the object file that is divided into subsections, each
containing a different kind of information. This section is designed to be a flexible and expandable
repository for supplemental object file data.  See Chapter 7 for more information.

1.4.2. Kinds of Object Files

There are four principal types of object files:

• Relocatable objects

Relocatable objects are object files that contain full relocation information. They are usually not
executable. Pre-link producers- generally compilers and assemblers- always generate relocatable
objects. The linker can also generate relocatable objects, but does not do so by default. See Chapter 4
for more details.

• Static (non-shared) executables

An object file is executable if it has no undefined symbol references. Executable objects can be static
or dynamic.

Static executables are object files that are linked -non_shared. They use archive libraries only.
They are fully resolved at link time and are loaded by the kernel's program execution facility.

• Dynamic (call-shared) executables
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Dynamic executables are object files that are linked -call_shared. They may use shared libraries,
archive libraries or both. A dynamic executable is the compilation system's default output. The system
loader performs dynamic linking, dynamic symbol resolution, and memory mapping for dynamic
executables and the shared libraries they use.

• Shared libraries

Shared libraries are object files that provide collections of routines that can be used by dynamic
executables. Although it contains executable code, a shared library by itself is not usually executable.
Advantages of shared libraries include the ability to use updated libraries without relinking and a
reduction in disk requirements.  The reduction in disk requirements is achieved by providing a single
copy of routines and data that might otherwise be duplicated in many executable object files.

Object file types can often be differentiated by their file name extension. Typically, relocatable objects
have a .o file extension and shared libraries have a .so file extension. The default name for an executable
object file is a.out. User-named executable files often do not have an extension.

It is important to be aware of which type of file is under discussion because the usage, content, and format
of each kind of object file can vary significantly.

1.4.3. Object File Compression

File compression is used widely on all kinds of files to save disk space. Similarly, object files can be
compressed to save space. However, not all objects are candidates for compression and not all tools that
handle objects also support compressed object files.

Decompressed data can be, at most, eight times the size of the compressed data. This rate of compression is
the best case possible. At worst case, a compressed object will actually be larger than the decompressed
version. Typically, however, a reduction of 50% to 75% in size is achieved.

When an object is compressed, the file header in uncompressed form precedes the compressed object file.
The uncompressed file header's magic number indicates whether the remainder of the file contains a
compressed object.
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Figure 1-3 Object File Compression

The value of "size" is the size of the uncompressed object in bytes. The archiver uses the "pad" value to
indicate the bytes of padding it inserted.  Both fields are 8-byte unsigned integers.

The most commonly compressed objects are archive members. Both the archiver and the linker support
compressed objects used as archive members.

Executable objects and shared libraries cannot be compressed because the dynamic loader does not support
compressed objects. To decompress an image, the loader would need to allocate space where it could write
the decompressed image. Serious system penalties would be incurred because no part of the image would
be shareable. However, a compressed object file can subsequently be decompressed and then loaded; this
might be a way to temporarily save disk space in some circumstances.

The tool objZ is a Tru64 UNIX compression utility designed for object files. See the objZ(1) man page
for details.

1.4.4. Object Archives

Archiving is a method used to enable manipulation of a large number of files as a single group, which may
ease the task of file management. Any file can be archived. However, the archive files of primary interest in
program development are archived object files that are used as libraries for static executables.

Object archives provide a means of working with a collection of objects simultaneously. System libraries
such as "libc.a" and "libm.a" are object archives. Each library collects a set of related objects which provide
a service in the form of callable APIs.  Benefits of using archives in this fashion include the grouping of
related functions and shorter build commands.

Another benefit of archive libraries is selective linking, whereby the linker extracts only needed objects
from a library, instead of mapping the entire library with the image. For example, suppose the library
libEx.a contained the objects x.o, y.o, and z.o. If the executable a.out depended on x.o to
define a referenced symbol, but not on the other objects in the archive, only x.o would become part of the
final executable object.
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Another typical use for object archives is to subdivide large builds into subsystems, each of which is
implemented as an archive that is eventually included in the final link.

Most tools that read objects will also read object archives. The linker applies special semantics in its
handling of object archives, while other utilities treat an object archive as simply a list of object files.

Object archive members can also be compressed. In this case, each object that is an archive member is
compressed as shown in Section 1.4.3. The archive file's administrative information is not compressed.
Also, an archive file may contain both compressed and uncompressed file members.

More information on archives can be found in Chapter 8.

1.4.5. Object File Versioning

The object file and symbol table formats are versioned. This versioning scheme is independent of the
operating system or hardware versions. It is not designed to be visible to end-users.

The object file and symbol table versions are each stored as a two-byte version stamp, with major and
minor components of one byte each. The object file version is stored in the a.out header's vstamp field,
and the symbol table version is stored in the symbolic header's vstamp field. The minor version is
incremented when new features or compatible structure changes are introduced. The major version is
incremented when an incompatible or semantically very significant change is made.

The object file version stamp covers the following structures:

• File header (filehdr.h)

• a.out header (aouthdr.h)

• Section header (scnhdr.h)

• Relocations (reloc.h)

• .comment data (scncomment.h)

• Dynamic loading information structures (coff_dyn.h)

The symbol table version covers all symbol table structures and values defined in the header files sym.h
and symconst.h.

The object file and symbol table versions can differ.

This document covers V3.13 of the object file and V3.13 of the symbol table.

Tool-specific version information for object file consumers may also be stored in the on-disk object file. If
present, this information is stored in the comment section. See Chapter 7 for details.

1.4.6. Object File Abstract Data Types

A consistent set of basic abstract data types are used to build object file, symbol table, and dynamic loading
structures. These names are defined in the header file coff_type.h.
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The use of abstract types for all elements of these structures facilitates cross-platform builds. To build a
tool to run on another platform, redefine the COFF basic abstract types for the new platform.  This is done
by inserting the new definitions and "#define ALTERNATE_COFF_BASIC_TYPES" prior to any
object file or symbol table header files.

Table 1-1 COFF Basic Abstract Types

Name Size Alignment Purpose

coff_addr 8 8 Unsigned program address

coff_off 8 8 Unsigned file offset

coff_ulong 8 8 Unsigned long word

coff_long 8 8 Signed long word

coff_uint 4 4 Unsigned word

coff_int 4 4 Signed word

coff_ushort 2 2 Unsigned half word

coff_short 2 2 Signed half word

coff_ubyte 1 1 Unsigned byte

coff_byte 1 1 Signed byte

Another data representation that is currently used exclusively in the optimization symbol table is LEB
(Little Endian Byte) 128 format. This is a variable-length format for numeric data.  The low-order seven
bits of each LEB byte are interpreted as an integer value. The high bit, if set, indicates a continuation to the
next byte. An LEB byte is illustrated in Figure 1-4. This format takes advantage of the likelihood that most
numbers will be small. To form a large number, concatenate the 7-bit segments of the LEB128 bytes, as
shown in Figure 1-5.

Figure 1-4 LEB 128 Byte



35

Figure 1-5 LEB 128 Multi-Byte Data

A value represented in LEB 128 format may be signed (SLEB) or unsigned (LEB). The second-highest bit
in the final byte of an SLEB value is the sign bit.  This means that the signed value has to be propagated
only within one byte.

1.5. Source Language Support

Object files originate from source files that may be coded in any of several high-level languages. The
Tru64 UNIX eCOFF object file format supports the programming languages C, C++, Fortran, Bliss,
Fortran90, Pascal, Cobol, Ada, PL1, and assembly. The choice of source language primarily impacts the
symbol table, which includes the type and scope information used by the debugger. See Section 5.3.2 for
more information.

The UNIX system is closely tied to the C programming language, and many tools that work with objects do
not fully support non-C languages. Reference the specific tool's documentation for details.

1.6. System Dependencies

Certain characteristics of the object file format are dependent on the Tru64 UNIX operating system. This
section highlights those features and provides references to more detailed information.

The address space and image layout information covered in Chapter 2 are dependent on the operating
system's virtual memory organization.

The kernel's virtual memory manager ensures that multiple processes can share all text and data pages. As
soon as a process writes to one of those pages, it receives its own copy of that page. Because text pages are
always mapped read-only, they are always shared for the lifetime of the process.

The virtual memory manager uses additional shareable pages, known as Page Table pages, to record the
memory layout of a process. The linker's default address selection and the system library addresses are
designed to maximize sharing of page table pages, which are implemented as "wired" memory, a limited
system resource.
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As part of this implementation, the text and data segments of shared libraries are usually separated in the
address space. This separation allows many shared library text segments to be mapped in one area of
memory.  The Page Table pages used to describe an area of memory containing only text segments are
shared by all processes that map one or more of those text segments into their address space.  This sharing
can result in significant savings in wired memory used by the system.

The GP-relative addressing technique is unique to Tru64 UNIX.  See Section 3.3.2.

The operation of the system dynamic loader as described in Chapter 6 is system-dependent. Other loaders
may behave differently.

The discussion of system shared library implementation using weak symbols is unique to Tru64 UNIX. See
Section 6.3.4.1.

1.7. Architectural Dependencies

The 64-bit Alpha architecture defaults to using the little-endian byte-ordering scheme. In little-endian
systems, the address of a multibyte data element is the address of its least significant byte, and the sign bit
is located in the most significant bit. Bytes are numbered beginning at byte 0 for the lowest address byte, as
shown in Figure 1-6

Figure 1-6 Little Endian Byte Ordering

A big-endian byte-order can be infered by assuming all structure fields would be byte-swapped in a big-
endian object.  For example, big-endian byte order can be infered from Figure 1-6 by reversing the byte-
numbering and moving the "byte address of quadword" label to the new location of byte 0. Non-obvious
differences in the big-endian representation will be called out in the appropriate sections.

As discussed in Section 2.3.5, hardware constraints dictate text and data alignment. Unaligned references
can cause fatal errors or negatively impact performance. For instance, on Alpha systems, dereferencing a
pointer to a longword- or quadword-aligned object is more efficient than dereferencing a pointer to a byte-
or word-aligned object. Special instructions exist for unaligned data memory accesses. The default
assumption is that data is aligned.

TASO, the Truncated Address Space Option, is a migration path for applications with 32-bit assumptions
onto 64-bit Alpha platforms. This topic is discussed in Section 2.3.3.2.

Relocation entries are heavily dependent on the Alpha instruction format. See Chapter 4 for details.

See the Assembly Language Programmer's Guide and Alpha Architecture Handbook for additional
information about the Alpha Architecture.
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1.8. Relevant Header Files

Object and archive file structure declarations and value definitions are contained in the following header
files in the /usr/include directory:

aouthdr.h
ar.h
coff_type.h
coff_dyn.h
cmplrs/cmrlc.h
cmplrs/stsupport.h
filehdr.h
linenum.h
pdsc.h
reloc.h
scnhdr.h
sym.h
symconst.h
scncomment.h
stamp.h

To access object file structures, it is preferable to use defined APIs.  APIs provide a constant interface to an
underlying structure which will evolve over time. See the libst_intro(3) manpage for reference.
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2. Headers

Headers serve as a cover page and table of contents for the object file. They contain size descriptions,
magic numbers, and pointers to other sections.

The object file components covered in this chapter are the file header, a.out header, and section headers:

• The file header identifies the object file and indicates its type.

• The a.out header provides the size, location, and addresses of the object's segments.

• Section headers store the name, size, and mapped address of their sections and contain the locations of
the section's raw data and relocation entries. Each object file section that is not part of the symbol table
has a section header.

An object file may contain other header sections that are used to navigate the symbol table and dynamic
loading information. The symbolic header and dynamic header are discussed in Chapter 5 and Chapter 6
respectively.

2.1. New or Changed Header Features

Version 3.13 of the object file format does not introduce any new header features.

2.2. Structures, Fields, and Values for Headers

2.2.1. File Header (filehdr.h)
struct filehdr {
        coff_ushort f_magic;
        coff_ushort f_nscns;
        coff_int f_timdat;
        coff_off f_symptr;
        coff_int f_nsyms;
        coff_ushort f_opthdr;
        coff_ushort f_flags;
};

SIZE - 24 bytes, ALIGNMENT - 8 bytes

File Header Fields

f_magic

File magic number (see Table 2-1).  Used for identification.

f_nscns

Number of section headers in the object file.

f_timdat

Time and date stamp. This field is implemented as a signed 32-bit quantity that acts as a forward or
backward offset in seconds from midnight on January 1, 1970. The resulting date range is
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approximately 1902-2038.

f_symptr

File offset to symbolic header.  This field is set to zero in a stripped object.

f_nsyms

Size of symbolic header (in bytes).  This field is set to zero in a stripped object.  

f_opthdr

Size of a.out header (in bytes).

f_flags

Flags (see Table 2-2) that describe the object file. Note that the file header flags cannot be treated as a
bit vector because some values are overloaded.

Table 2-1 File Header Magic Numbers

Symbol Value Description

ALPHAMAGIC O603 Object file.

ALPHAMAGICZ O610 Compressed object file.

ALPHAUMAGIC O617 Ucode object file.  Obsolete.
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Table 2-2 File Header Flags

Symbol Value Description

F_RELFLG 0x0001 File does not contain relocation information. This flag
applies to actual relocations only, not compact relocations.

F_EXEC 0x0002 File is executable (has no unresolved external references).

F_LNNO 0x0004 Line numbers are stripped from file.

F_LSYMS 0x0008 Local symbols are stripped from file.

F_NO_SHARED 0x0010 Currently unused.

F_NO_CALL_SHARED 0x0020 Object file cannot be used to create a -call_shared
(dynamic) executable file.

F_LOMAP 0x0040
Allows a static executable file to be loaded at an address less
than VM_MIN_ADDRESS (0x10000). This flag cannot be
used by dynamic executables.

F_SHARABLE 0x2000 Shared library.

F_CALL_SHARED 0x3000 Dynamic executable file.

F_NO_REORG 0x4000 Tells object consumer not to reorder sections.

F_NO_REMOVE 0x8000 Tells object consumer not to remove NOPs.

2.2.2. a.out Header (aouthdr.h)

The a.out header is also referred to as the "optional header". Note that "optional" is a misnomer because
the header is actually mandatory.

typedef struct aouthdr {
        coff_ushort magic;
        coff_ushort vstamp;
        coff_ushort bldrev;
        coff_ushort padcell;
        coff_long tsize;
        coff_long dsize;
        coff_long size;
        coff_addr entry;
        coff_addr text_start;
        coff_addr data_start;
        coff_addr bss_start;
        coff_uint gprmask;
        coff_word fprmask;     
        coff_long gp_value;
} AOUTHDR;
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SIZE - 80 bytes, ALIGNMENT - 8 bytes

a.out Header Fields

magic

Object-file magic numbers (see Table 2-3).

vstamp

Object file version stamp. This value consists of a major version number and a minor version number,
as defined in the stamp.h header file:

MAJ_SYM_STAMP 3 High byte

MIN_SYM_STAMP 13 Low byte

This version stamp covers all parts of the object file exclusive of the symbol table, which is covered by
an independent version stamp stored in the symbolic header

See Section 2.1, Section 3.1, Section 4.1, Section 6.1, and Section 7.1 for a description of object file
features introduced with version V3.13.

bldrev

Revision of system build tools. This value is defined in stamp.h and is updated for each major
release of the operating system. The values for Tru64 UNIX releases to date are shown below. This
field is not meaningful to users.

Build Revision Constants

Release 1.2 1.3 2.0 3.0 3.2 4.0 5.0

bldrev - 2 4 6 8 10 12

tsize

Text segment size (in bytes) padded to 16-byte boundary; set to zero if there is no text segment.

For ZMAGIC object files, this value includes the size of the header sections (file header, a.out
header, and all section headers). See Section 2.3.2 for more information.

dsize

Data segment size (in bytes) padded to 16-byte boundary; set to zero if there is no data segment..
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bsize

Bss segment size (in bytes) padded to 16-byte boundary; set to zero if there is no bss segment.

entry

Virtual address of program entry point. This field is meaningful primarily for executable objects. For
shared libraries, it contains the starting address of the first procedure. For pre-link objects, it is
typically set to zero.

text_start, data_start, bss_start

Base address of text, data, and bss segments, respectively, for this file.  Alignment requirements are
discussed in Section 2.3.2.

gprmask

Unused.

fprmask

Unused.

gp_value

The initial GP (Global Pointer) value used for this object. The kernel loads this value into the GP
register ($gp) when a program is executed. The program entry point identified by the entry field will
load its GP value into the GP register, which may or may not be different than the value in this field for
objects with multiple GP ranges.  See Section 2.3.4.  This value is also used by the linker as a basis for
relocation adjustments in objects.  See Section 4.3.3.2.

Table 2-3 a.out Header Magic Numbers

Symbol Value Description

OMAGIC 0407
Impure format. The text segment is not write-protected or shareable; the data
segment is contiguous with the text segment. An OMAGIC file can be a relocatable
object or an executable.

NMAGIC 0410
Shared text format. NMAGIC files are static executables. This layout is rarely used
but supported for historical reasons.

ZMAGIC 0413
Demand-paged format. The text and data segments are separated and the text
segment is write-protected and shareable. The object can be a dynamic or static
executable, or a shared library. All shared objects use a ZMAGIC layout.

2.2.3. Section Headers (scnhdr.h)

struct scnhdr {
        char s_name[8];
        coff_addr s_paddr;
        coff_addr s_vaddr;
        coff_long s_size;
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        coff_off s_scnptr;
        coff_off s_relptr;
        coff_ulong s_lnnoptr;
        coff_ushort s_nreloc;
        coff_ushort s_nlnno;
        coff_uint s_flags;
};

SIZE - 64 bytes, ALIGNMENT - 8 bytes

Section Header Fields

s_name

Section name (see Table 2-4); null-terminated unless exactly 8 bytes.  Long section names are
truncated to 8 bytes and  are not null-terminated. Unused bytes are zero filled.

s_paddr

Base virtual address of section in the image. Although this field contains the same value as s_vaddr,
normally s_vaddr is used and s_paddr is ignored.

s_vaddr

Base virtual address of a loadable section in the image.

This field is set to zero for nonloadable sections such as .comment.

For the sections .tlsdata and .tlsbss, this field contains an offset from the beginning of the
object's dynamically allocated TLS region.

s_size

Section size padded to 16-byte boundary.

s_scnptr

File offset to beginning of raw data for the section. The raw data pointed to by this field, and described
by the s_size field, is mapped at s_vaddr (if non-zero) in the process image.

For sections with no raw data, such as .bss, this field is set to zero.

s_relptr

File offset to relocations for the section; set to zero if the section has no relocations.

s_lnnoptr

In .lita section header, indicates number of GP ranges used for the object:

Value Meaning

0 Object has one GP range.
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1 Invalid value.

2 or higher Object has this number of GP ranges.

For sections with GP relative relocations, this field contains the number of R_GPVALUE relocation
entries for that section.  In .pdata this field contains the number of runtime procedure descriptors.

For other sections, the field is reserved and must be zero for object file versions V3.13 and greater.

s_nreloc

Number of relocation entries; 0xffff if number of entries overflows size of this field (see Table 2-5).

s_nlnno

Reserved for future use, must be zero.

s_flags

Flags identifying the section (see Table 2-5).  Not all of these flag values are single bit masks.  See
Section 2.3.6 for information on testing section flags.

Table 2-4 Section Header Constants for Section Names

Symbol Field Contents Description

_TEXT .text Text section

_INIT .init Initialization text section

_FINI .fini Termination (clean-up) text section

_RCONST .rconst Read-only constant section

_RDATA .rdata Read-only data section

_DATA .data Large data section

_LITA .lita Literal address pool section

_LIT8 .lit8 8-byte literal pool section

_LIT4 .lit4 4-byte literal pool section

_SDATA .sdata Small data section

_BSS .bss Large bss section

_SBSS .sbss Small bss section
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_UCODE .ucode Ucode section (obsolete)

_GOT1 .got Global offset table

_DYNAMIC1 .dynamic Dynamic linking information

_DYNSYM1 .dynsym Dynamic linking symbol table

_REL_DYN1 .rel.dyn Relocation information

_DYNSTR1 .dynstr Dynamic linking strings

_HASH1 .hash Dynamic symbol hash table

_MSYM1 .msym Additional dynamic linking symbol table

_LIBLIST1 .liblist Shared library dependency list

_CONFLICT1 .conflict
Additional dynamic linking information
(This name is truncated to .conflic when stored
in the s_name field of the section header.)

_XDATA2 .xdata Exception scope table

_PDATA2 .pdata Exception procedure table

_TLS_DATA .tlsdata Initialized TLS data

_TLS_BSS .tlsbss Uninitialized TLS data

_TLS_INIT .tlsinit Initialization for TLS data

_COMMENT .comment Comment section

Table Notes:

1. These sections exist only in dynamic executables and shared libraries and are used during dynamic
linking. See Chapter 6 for details.

2. The .xdata and .pdata sections respectively contain the run-time procedure descriptors and code
range descriptors that enable exception-handling. See the Calling Standard for Alpha Systems for
details. Other sections are described in Chapter 3.



46

Table 2-5 Section Flags (s_flags field)

Symbol Value Description

STYP_REG 0x00000000 Regular section: allocated, relocated, loaded. User section
flags have this setting.

STYP_TEXT 0x00000020 Text only

STYP_DATA 0x00000040 Data only

STYP_BSS 0x00000080 Bss only

STYP_RDATA 0x00000100 Read-only data only

STYP_SDATA 0x00000200 Small data only

STYP_SBSS 0x00000400 Small bss only

STYP_UCODE 0x00000800 Obsolete

STYP_GOT1 0x00001000 Global offset table

STYP_DYNAMIC1 0x00002000 Dynamic linking information

STYP_DYNSYM1 0x00004000 Dynamic linking symbol table

STYP_REL_DYN1 0x00008000 Dynamic relocation information

STYP_DYNSTR1 0x00010000 Dynamic linking symbol table

STYP_HASH1 0x00020000 Dynamic symbol hash table

STYP_DSOLIST1 0x00040000 Shared library dependency list

STYP_MSYM1 0x00080000 Additional dynamic linking symbol table

STYP_CONFLICT1 0x00100000 Additional dynamic linking information

STYP_FINI 0x01000000 Termination text only

STYP_COMMENT 0x02000000 Comment section

STYP_RCONST 0x02200000 Read-only constants

STYP_XDATA 0x02400000 Exception scope table

STYP_TLSDATA 0x02500000 Initialized TLS data
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STYP_TLSBSS 0x02600000 Uninitialized TLS data

STYP_TLSINIT 0x02700000 Initialization for TLS data

STYP_PDATA 0x02800000 Exception procedure table

STYP_LITA 0x04000000 Address literals only

STYP_LIT8 0x08000000 8-byte literals only

STYP_EXTMASK 0x0ff00000 Identifies bits used for multiple bit flag values.

STYP_LIT4 0x10000000 4-byte literals only

S_NRELOC_OVFL2 0x20000000 Indicates that section header field s_nreloc overflowed

STYP_INIT 0x80000000 Initialization text only

Table Notes:

1. These sections exist only in dynamic executables and shared libraries and are used during dynamic
linking. See Chapter 6 for details.

2. The S_NRELOC_OVFL flag is used when the number of relocation entries in a section overflows the
s_nreloc field in the section header. In this case, s_nreloc contains the value 0xffff and the
s_flags field has the S_NRELOC_OVFL flag set. The actual relocation count is in the first
relocation entry for the section.

General Notes:

The system linker uses the s_flags field instead of s_name to determine the section type. User-defined
sections (see Section 3.3.10) constitute an exception; they are identified exclusively by section name.

Each section header must be unique within the object file. For system-defined sections, both the section
name and flags must be unique. For user-defined sections, the name must be unique.
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2.3. Header Usage

2.3.1. Object Recognition

Object file consumers use the file header to recognize an input file as an object file. Other tools that do not
support objects may use the file header to determine that they cannot process the file. The file tool can
also identify an object by means of the file and a.out headers.

A file is identified as an object in its first 16 bits. These bits correspond to the magic number field in the
file header. Objects built for the Alpha architecture are identified by the magic number ALPHAMAGIC;
equivalent compressed objects are identified by ALPHAMAGICZ. Foreign objects, which are objects built
for other architectures, may also be positively identified. However, once a foreign object is recognized, it is
not considered to be a linkable or executable object file on the Alpha system.

In addition to providing basic identification, the file header also provides a high-level description of the
object file through its flags field. File header flags store the following information: whether the object is
executable, whether symbol table sections have been stripped, whether the file is suitable for creation of a
shared library, and more. See Table 2-2 for a list of all flags.

The a.out header magic numbers also contribute important information about the file format. The magic
numbers signify different organizations of object file sections and indicate where the image will be mapped
into memory (see Section 2.3.2).

2.3.2. Image Layout

The a.out header stores run-time information about the object. Its magic number field indicates how the
file is to be organized in virtual memory. Note that the contents and ordering of the sections of the image
can be affected by compilation options and program contents in addition to the MAGIC classification.

The possible image formats are:

• Impure Format (OMAGIC)

OMAGIC files are typically relocatable object files. They are referred to as "impure" because the text
segment is writable.

• Shared Text Format (NMAGIC)

NMAGIC files are static executables that use a different organization from the default ZMAGIC layout.
The NMAGIC format is historical and offers no special advantages. This format can be selected by
using the linker option -n or -nN in conjunction with -non_shared. In an NMAGIC file, the text
segment is shared.

• Demand Paged Format (ZMAGIC)

ZMAGIC files are executable files or shared libraries. This format is referred to as demand-paged
because its segments are blocked on page boundaries, allowing the operating system to page in text
and data as needed by the running process. By default, the linker aligns ZMAGIC segments on 64K
boundaries, the maximum possible page size on Alpha systems.

The ordering of sections within segments is flexible. Diagrams in this section depict the default ordering as
laid out by the linker.
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The default segment ordering, which places the text segment before the data segment, is flexible. However,
the bss segment is required to contiguously follow the data segment, wherever the data segment is located.

All three formats are constrained by the following restrictions:

• Segments must not overlap.

• The bss segment must follow the data segment.

• All text addresses in the object file must be within two gigabytes (0x7fff8000) of all data addresses
in the file.

2.3.2.1. OMAGIC

The OMAGIC format typically has the following layout and characteristics:

Figure 2-1 OMAGIC Layout

• Segments must not overlap.

• The bss segment must follow the data segment.



50

• All text addresses in the object file must be within two gigabytes (0x7fff8000) of all data addresses
in the file.

• Starting section addresses are aligned on a 16-byte boundary.

• Pre-link OMAGIC objects are zero-based, with the data segment contiguous to the text segment. The
default text segment address for partially linked objects is 0x10000000, and the data segment
follows the text segment.

• May contain relocation information.

• Cannot be a shared object.

Starting addresses can be specified for the text and data segments using -T and -D options. These
addresses can be anywhere in the virtual address space but must be aligned on a 16-byte boundary.

OMAGIC layout is most commonly used for pre-link object files produced by compilers. Post-link OMAGIC
files tend to be used for special purposes such as loadable device drivers or om input objects.

Loadable device drivers must be built as OMAGIC files because the kernel loader kloadsrv relies upon
relocation information in order to link objects into the kernel image.

OMAGIC files can also be executable. An important example of an OMAGIC executable file is the kernel,
/vmunix. A programmer might also choose to use an OMAGIC format for self-modifying programs or for
any other application that has a reason to write to the text segment.

2.3.2.2. NMAGIC

The NMAGIC file format is of historical interest only.

The NMAGIC format typically has the following layout and characteristics:
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Figure 2-2 NMAGIC Layout

• Segments must not overlap.

• The bss segment must follow the data segment.

• All text addresses in the object file must be within two gigabytes (0x7fff8000) of all data addresses
in the file.

• Text and data segment addresses fall on page-size boundaries.  The bss segment is aligned on a 16-byte
boundary.

• By default, the starting address of the text segment is 0x20000000 and the starting address of the
data segment is 0x40000000.

• Cannot contain relocation information.

• Cannot be a shared object.

Addresses can be specified for the start of the text and data segments using -T and -D options. These
addresses may be anywhere in the virtual address space but must be a multiple of the page size.
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2.3.2.3. ZMAGIC

The ZMAGIC format typically has the following layout and characteristics:

Figure 2-3 ZMAGIC Layout for Shared Object
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Figure 2-4 ZMAGIC Layout for Static Executable Objects

The .rdata and .tlsinit sections are shown as part of the text segment. However, it is possible that
one or both of those sections might be in the data segment. They are placed in the data segment only if they
contain dynamic relocations.

• Segments must not overlap.

• The bss segment must follow the data segment.

• All text addresses in the object file must be within two gigabytes (0x7fff8000) of all data addresses
in the file.

• Text and data segments are blocked; the blocking factor is the page size.

• By default the starting address of the text segment is 0x120000000 and the starting address of the
data segment is 0x140000000. The bss segment follows the data segment.

• Can be either a shared or nonshared object.

• Cannot contain relocation information, but shared objects may contain dynamic relocation information.
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Addresses can be specified for the start of the text and data segments using -T and -D options. Those
addresses can be anywhere in the virtual address space but must be a multiple of the page size.

2.3.3. Address Space

At load time, an executable object is mapped into the system's virtual memory using one of the formats
detailed in Section 2.3.2. The user can choose where the object, transformed into the program image, will
be loaded, but system-specific constraints exist. This section discusses the general layout of the address
space and the various considerations involved in choosing memory locations for object file segments.

Figure 2-5 shows the default memory scheme for a dynamic image.

Figure 2-5 Address Space Layout

The stack is used for storing local variables. It grows toward zero. The stack pointer (stored in register
$sp) points to the top of the stack at all times. In generated code, items on the stack are often referenced
relative to the stack pointer.

The program heap is reserved for system memory-allocation calls (brk() and sbrk()). TLS sections are
allocated from the heap. The heap begins where the bss segment of the program ends, and the special
symbol _end indicates the start of the heap.  The heap's placement can also be calculated using the starting
addresses and sizes of segments in the a.out header. The mapping of shared libraries may impose an
upper bound on the heap's size. Some programs do not have a heap.
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The dynamic loader and shared libraries reside in memory during program execution. See Section 6.3.2 for
details.

User programs can request additional memory space that is dynamically allocated. One way to request
space is through an anonymous mmap() call. This system call creates a new memory region belonging to
the process. The user can attempt to specify the address where the region will be placed. However, if it is
not possible to accomodate that placement, the system will rely on environment variables to dictate
placement. See the mmap(2) man page for details.

The usable address range for user mode addresses is 0x0 - 0x800000000000. Attempts to map object
file segments outside this range will fail, and the defaults will be invoked or execution aborted.

2.3.3.1. Address Selection

Several mechanisms permit the user to select addresses for loadable objects or assist the user in choosing
viable addresses. Unless there is a good reason to do otherwise, it is preferable to rely on system defaults,
which are designed to enhance performance and reduce conflicts.

The linker's -T and -D options may be used to specify the starting addresses for the text and data segments
of an executable, respectively. Use of these options may be appropriate for large applications with
dependencies on many shared libraries that need to explicitly manage their address space. Programs relying
in any way on fixed addresses may also need to control the segment placement.

Another use of the address selection options is to place an application in the lowest 31 bits of the address
space. To restrict an application to this part of the address space, the -T and -D switches may be used in
conjunction with the -taso option (see Section 2.3.3.2) or separately.

The default placement of the text and data segments at 0x120000000 and 0x140000000 for
executables means the default maximum size of the text segment is 0x20000000 bytes, or approximately
500MB. If this space is insufficient, the -D option can be used to enlarge it by specifying a higher starting
address for the data segment.

The -T and -D options can also be used to change the segment ordering. Some applications, such as those
ported from other platforms onto the Alpha platform, may rely upon the data segment being mapped in
lower addresses than the text segment.

If only -T or only -D is specified on the link line, system defaults are used for the nonspecified address. If
a given address is not properly aligned, the linker rounds the value to the applicable boundary. If
inappropriate addresses are chosen, such as addresses for the text and data segments that are too far apart,
linking may fail. Alternatively, linking may succeed, but execution can abnormally terminate if addresses
are incompatible with the system memory configuration.

The linker option -B, which specifies a placement for the bss segment, is available for partial links only.
For executable objects, the bss segment should be contiguous with the data segment, which is the system
default. As a general rule, the -B option should not be used.

Another mechanism permits address selection for shared libraries. A registry file, by default named
so_locations, stores shared library segment addresses and sizes. The so_locations directives,
described in the Programmer's Guide, can be used to control the linker's address selection for shared
libraries.
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2.3.3.2. TASO Address Space

The TASO (Truncated Address Space Option) address space is a 32-bit address-space emulation that is
useful for porting 32-bit applications to 64-bit Alpha systems. Selection of the -taso linker option causes
object file segments to be loaded into the lower 31 bits of the memory space. This can also be
accomplished, in part, by using -T and -D. If the -taso option is used in conjunction with the -T or -D
options, the addresses specified with -T and -D take precedence.

Use of the -taso option also causes shared libraries linked outside the 31-bit address space to be
appropriately relocated by the loader. All executable objects and shared libraries will be mapped to the
address range 0x0 - 0x7fffffff.

The default segment addresses for a TASO executable are 0x12000000 for the text segment and
0x14000000 for the data segment, with the bss segment directly following the data segment. The -T and
-D options can be used to alter the segment placement if necessary.

Figure 2-6 is a diagram of the TASO address space layout.

Figure 2-6 TASO Address Space Layout

A TASO shared object is marked as such with the RHF_USE_31BIT_ADDRESSES flag in the
DT_FLAGS entry in the dynamic header. The loader recognizes dynamic executable objects marked with
the TASO flag and maps their shared library dependencies to the TASO address space. A TASO static
executable is not explicitly identified.
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2.3.4. GP (Global Pointer) Ranges

Programs running on Tru64 UNIX obtain the addresses of procedures and global data by means of a GP
(Global Pointer) and an address table. Address ranges and address-table sections (.lita and .got) are
described further in Section 3.3.2 and Section 6.3.3. However, several important pieces of information
concerning GP-relative addressing are contained in the headers.

During program execution, the global pointer register ($gp) contains the active GP value. This value is
used to access run-time addresses stored in the image's address-table section. Addresses are specified in
generated code as an offset to the GP.

There are several reasons for using this GP-relative addressing technique:

• Alpha instructions support only 16-bit relative addressing, but the generated code must be able to
quickly and efficiently access arbitary 64-bit addresses.

• The generated code must be position independent.

• The addressing method must support symbol preemption (see Section 6.3.4).

A GP range is the set of addresses reachable from a given GP. The size of this range is approximately
64KB, or 8K 64-bit addresses.

Although only one GP value is active at any time, a program can use several GP values. A program's text
can be divided into ranges of addresses with a different GP value for each range.  The linker will start a
new GP range at a boundary between two input object file's section contributions.  As a result, a GP range
will rarely be filled before a new GP range is started.  Regardless of how much of a GP range is actually
used, the linker always sets the GP value associated with that range as follows:

GP value = GP range start address + 32752

Figure 2-7 is a depiction of the use of GP values and ranges.

Figure 2-7 GP (Global Pointer) Ranges

Objects can share a GP range, as shown in Figure 2-7, or use more than one GP range, depending on the
amount of program data. However, the Calling Standard for Alpha Systems specifies that a single



58

procedure can use only one GP value. The a.out header's gp_value field contains either the GP value
of the object (if there is only one) or the first one the program should use (if there are multiple GP ranges).

How the number of GP ranges is represented in an object depends on the object's type:

• For objects with a .lita section, the section header field s_nlnnoptr indicates the number of GP
ranges, as explained in Section 2.2.3.

• In a relocatable object (OMAGIC file), a new GP range is signalled by a R_GPVALUE relocation entry.
See Section 4.3.4.18 for details.

• In shared objects, multiple GP ranges are indicated by entries in the dynamic header section
(.dynamic), which are described in Section 6.2.1.

2.3.5. Alignment

Alignment is an architectural issue that must be dealt with in the object file at several levels: object file
segments, object file sections, and program variables all have alignment requirements.

Data alignment refers to the rounding that must be applied to a data item's address. For natural alignment, a
data item's address must be a multiple of its size. For example, the natural alignment of a character variable
is one byte, and the natural alignment of a double-precision floating-point variable is 8 bytes.

On Alpha systems, all data should be aligned on proper boundaries. Unaligned references can result in
substantially slower access times or cause fatal errors. The compiler and the user have some control over
the alignments through the use of assembler directives and compilation flags (see the Programmer's Guide
and Assembly Language Programmer's Guide). When designing alignment attributes, however, the
architectural cost of loading unaligned values should be considered.

Object file segments are, by default, aligned as indicated in Section 2.3.2. Segment alignment can be
impacted by section alignment.  The segment alignment must be evenly divisible by the highest sectional
alignment factor for sections contained in that segment.

Object file sections may have a power-of-two alignment factor specified in their section headers (see
Section 2.2.3). The default sectional alignment is 16 bytes.

The default alignment boundary for raw data is 16 bytes. Smaller alignments can be applied to invidual
data items allocated in raw section data. If a data item must be aligned with greater than 16 byte alignment,
the section in which it is allocated must be aligned with a power-of-two alignment factor that is greater than
or equal to the data item's required alignment.

Individual data items should meet the following minimum requirements.  Structure members and array
elements are aligned according to the minimum requirements in order to minimize pad bytes between
members.  Other data items are typically aligned with 8 or 16 byte rounding due to alignment requirements
imposed by the generated code used to access data addresses.

• Atomic data items are aligned using natural alignment.

• Structures are aligned based on the size of their largest member.

• Arrays are aligned according to the alignment requirements of the array element.
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• Procedures are aligned on a 16-byte (quadruple instruction word) boundary. This preserves the
integrity of multiple-instruction issue established by the instruction scheduling phase of code
generation.

• Common storage class symbols must be aligned when they are allocated. The value field for a
common storage class symbol indicates its size and determines which section it will be allocated in
(.bss or .sbss). All common storage class symbols with a size of 16-bytes or greater are aligned to
octaword (16-byte) boundaries. All other common storage class symbols are aligned to quadword (8-
byte) boundaries.

Sections are padded wherever necessary to maintain proper alignment. Padding is done with zero bytes in
the data and bss sections. In the text segment, each routine is padded with NOP instructions to a 16-byte
boundary. The section sizes reported in the section headers and the segment sizes reported in the a.out
header reflect this padding.

2.3.6. Section Types

The primary unit of an object file is a section, and the sections in an object are identified, located, and
broadly characterized by means of the section headers. Object files are organized into sections primarily to
enable the linker to combine multiple input objects into an executable image. At link time, sections of the
same type are concatenated or merged. The sectional breakdown also provides the linker flexibility in
segment mapping; the linker has a choice in assigning sections to segments for memory-mapping and
loading.

Section headers include flags that describe the section type. These flags identify the section type and
attributes. See Table 2-5 for a complete listing of section flags. Note that the s_flags field cannot be
treated as a simple bit vector when testing or accessing section types because some of the flag values are
overloaded.  The algorithm below illustrates how to test for a particular section type using the s_flags
field.

if (type & STYP_EXTMASK)
    FOUND = ((SHDR.s_flags & STYP_EXTMASK) == type)
else
    FOUND = (SHDR.s_flags & type)

Sections can be mapped or unmapped. A mapped section is one that is part of the process image as well as
the object file. An unmapped section is present only in the on-disk object file.

Raw data, organized by section and segment, is part of the process image. For a ZMAGIC file, all header
sections in the object are also mapped into memory as part of the text segment. However, the .comment
section is never loaded with a program.

2.3.7. Special Symbols

Some special symbol names are reserved for use by the linker or loader. The majority of these special
symbols correspond to locations in the image layout.

Table 2-6 describes the special symbols and indicates whether they are reserved for the linker or the loader.
Additional special symbols for debug information are described in Section 5.3.9.
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Table 2-6 Special Symbols

Linker Reserved Symbols

Symbol Description

_BASE_ADDRESS Base address of text segment.

_cobol_main First COBOL main symbol; undefined if not a COBOL program.

_DYNAMIC Starting address of .dynamic section if present; otherwise, zero.

_DYNAMIC_LINK Value is 1 if a dynamic executable file; otherwise, zero.

_ebss End of bss segment.

_edata End of data segment.

edata1 Weak symbol for end of data segment.

_end End of bss segment.

end1 Weak symbol for end of bss segment.

_etext End of text segment.

etext1 Weak symbol for end of text segment.

_fbss
First location of bss data.  Usually the virtual address of either the
.sbss or .bss section.

_fdata
First location of initialized data.  Usually the virtual address of the
.data section and data segment.

_fpdata Start of .pdata section.

_fpdata_size
Number of entries in .pdata. The exception-handling object file
sections (.pdata and .xdata) are included in the output object if
this symbol is referenced.

__fstart Start of .fini section.

_ftext
First location of executable text.  Usually the virtual address of the
.text section.

_ftlsinit The address of the .tlsinit section.

GOT_OFFSET Starting address of .got section if present; otherwise, zero.
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_gp GP value stored in a.out header.

_gpinfo Table of GP ranges used exclusively by exception handling code.

__istart Start of .init section.

_procedure_string_table2 String table for run-time procedures

_procedure_table2 Run-time procedure table.

_procedure_table_size2 Number of entries in run-time procedure table.

__tlsbsize Size of the .tlsbss section.

__tlsdsize Size of the .tlsdata section.

__tlskey
The value of this symbol is the address of the GOT or .lita entry
of the tlsoffset symbol.

__tlsoffset
Offset in the TSD array of the TLS pointer for a particular object. For
static executables, this value is set at link time. For shared objects, the
value is set to 0 at link time and filled in at run time.

__tlsregions The number of TLS regions (TSD entries) that are used by an
executable or library.

Loader Reserved Symbols

_ldr_process_context Points to loader's data structures.

ldr_process_context1 Weak symbol pointing to loader's data structures.

_rld_new_interface The generic loader entry point servicing all loader function calls.

Table Notes:

1. These symbols are not defined under strict ANSI standards. They are weak symbols that are retained
for backward compatibility. See Section 6.3.4.2 for further discussion of weak aliasing to strong
symbols.

2. These symbols relate to the run-time procedure table, which is a table of RPDR stuctures (their
declaration is in the header file sym.h). The table is a subset of the procedure descriptor table portion
of the symbol table with one additional field, exception_info. When the procedure table entry is
for an external procedure and an external symbol table exists, the linker fills in exception_info
with the address of the external symbol. Otherwise, it fills in exception_info with zeros.

The linker defines special symbols only if they are referenced.

The majority of these symbols have local binding in a shared object's dynamic symbol table. Consequently,
a shared object can only reference its own definition of these symbols. However, several special symbols
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have global scope. The linker-defined symbols end, _end, __istart, and _cobol_main are global,
which implies that each has a unique value process-wide. The symbol _end and its weak counterpart end
are used by libc.so to identify the start of the heap in memory. The symbol _cobol_main gives a
COBOL program's main entry point.

Special symbols in addition to those listed in Table 2-1 are defined by the linker to represent object file
section addresses:

.bss

.comment

.data

.fini

.init

.lit4

.lit8

.lita

.pdata

.rconst

.rdata

.sbss

.sdata

.text

.xdata

The value of the symbol is the starting address of the corresponding section. These symbols generally are
not referenced by user code. For shared objects, they may appear in the dynamic symbol table.

2.3.7.1. Accessing

A user program can reference, but not define, reserved symbols. An error message is generated if a user
program attempts to define a symbol reserved for system use.

A special symbol is a label, and thus its value is its address. Interpreting a label's contents as its value may
lead to an access violation, particularly for those linker-defined symbols that are not address locations
within the image (for example, _DYNAMIC_LINK or _procedure_table_size).

The following example shows how linker-defined labels are referenced in code:

$ cat proctab.c
#include <stdio.h>

extern _procedure_table_size;
extern _procedure_string_table;

main(){
int i;
void *tempsize=&_procedure_table_size;
void *tempstring=&_procedure_string_table;
long size=(long) tempsize
char *string=(char *) tempstring;

printf("\n Procedure Table Size=%d\n\n",size);

for (i=0;i < size;i++){
printf("%d: %s\n",i+1,string);
string+=strlen(string)+1;
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}
}

$ a.out

 Procedure Table Size=11

1: static procedure (no name)
2: main
3: __start
4: exit
5: _mcount
6: __eprol
7: eprol
8: printf
9: strlen
10: __exc_add_pc_range_table
11: __exc_add_gp_range
$

This example prints out the names stored in the run-time procedure string table. The string table consists of
character strings of varying lengths separated by null characters.

2.4. Language-Specific Header Features

The linker-defined symbol _cobol_main is set to the symbol value of the first external symbol
encountered by the linker with its cobol_main flag set. COBOL programs use this symbol to determine
the program entry point.
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3. Instructions and Data

Instructions and data are the portions of the object file that are logically copied into the final process image.
Instructions include all executable machine code. Data includes initialized and zero-initialized data,
constant data, exception-handling data structures, and thread local storage (TLS) data. The breakdown of
the instructions and data into object file sections is shown in Figure 3-1.

Object file sections are organized into three loadable segments: text, data, and bss. Multiple TLS regions
may also be loaded. The mapping of sections into segments is principally determined by segment access
permissions and object file. Figure 3-1 illustrates the layout of a typical dynamic executable file. See
Section 2.3.2 for details.

Figure 3-1 Raw Data Sections of an Object File

The object file sections containing dynamic load information are covered separately in Chapter 6. Chapter
7 describes the .comment section data. This chapter covers all other raw data sections.
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3.1. New or Changed Instructions and Data Features

Version 3.13 of the object file format does not introduce any new features for the instructions or data
contained within the object file.

3.2. Structures, Fields, and Values for Instructions and Data

Section 3.2.1 and Section 3.2.2 contain structure declarations for the exception-handling data structures as
stored in the .xdata and .pdata object file sections. These are the only two sections covered in this
chapter that contain structured data. Text sections containing machine instructions use the Alpha instruction
formats and other sections contain binary and character data.

3.2.1. Code Range Descriptor (pdsc.h)

The .pdata section contains a table of code range descriptors ordered by address.

typedef unsigned int            pdsc_mask;
typedef unsigned int            pdsc_space;
typedef int                     pdsc_offset;

union pdsc_crd {
        struct {
            pdsc_offset    begin_address;
            pdsc_offset    rpd_offset;
        } words;
        struct {
            pdsc_space     reserved1             :2;
            pdsc_offset    shifted_begin_address :30;
            pdsc_mask      no_prolog             :1;
            pdsc_mask      memory_speculation    :1;
            pdsc_offset    shifted_rpd_offset    :30;
        } fields;
}

SIZE - 8 bytes, ALIGNMENT - 4 bytes

See the Calling Standard for Alpha Systems for a full description.

3.2.2. Run-time Procedure Descriptor (pdsc.h)

The .xdata section contains a table of run-time procedure descriptors. This table is not necessarily sorted.
In addition to this table, the .xdata section may contain other exception-handling data.

typedef unsigned char           pdsc_uchar_offset;
typedef unsigned short          pdsc_ushort_offset;
typedef unsigned int            pdsc_count;
typedef unsigned int            pdsc_register;
typedef unsigned long           pdsc_address;

typedef union pdsc_rpd {

        struct pdsc_short_stack_rpd {
            pdsc_mask          flags:8;
            pdsc_uchar_offset  rsa_offset;
            pdsc_mask          fmask:8;
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            pdsc_mask          imask:8;
            pdsc_count         frame_size:16;
            pdsc_count         sp_set:8;
            pdsc_count         entry_length:8;
        } short_stack_rpd;

        struct pdsc_short_reg_rpd {
            pdsc_mask          flags:8;
            pdsc_space         reserved1:3;
            pdsc_register      entry_ra:5;
            pdsc_register      save_ra:5;
            pdsc_space         reserved2:11;
            pdsc_count         frame_size:16;
            pdsc_count         sp_set:8;
            pdsc_count         entry_length:8;
        } short_reg_rpd;

        struct pdsc_long_stack_rpd {
            pdsc_mask          flags:11;
            pdsc_register      entry_ra:5;
            pdsc_ushort_offset rsa_offset;
            pdsc_count         sp_set:16;
            pdsc_count         entry_length:16;
            pdsc_count         frame_size;
            pdsc_space         reserved;
            pdsc_mask          imask;
            pdsc_mask          fmask;
        } long_stack_rpd;

        struct pdsc_long_reg_rpd {
            pdsc_mask          flags:11;
            pdsc_register      entry_ra:5;
            pdsc_register      save_ra:5;
            pdsc_space         reserved1:11;
            pdsc_count         sp_set:16;
            pdsc_count         entry_length:16;
            pdsc_count         frame_size;
            pdsc_space         reserved2;
            pdsc_mask          imask;
            pdsc_mask          fmask;
        } long_reg_rpd;

        struct pdsc_short_with_handler {
            union {
                struct pdsc_short_stack_rpd short_stack_rpd;
                struct pdsc_short_reg_rpd   short_reg_rpd;
            } stack_or_reg;
            pdsc_address       handler;
            pdsc_address       handler_data;
        } short_with_handler;

        struct pdsc_long_with_handler {
            union {
                struct pdsc_long_stack_rpd  long_stack_rpd;
                struct pdsc_long_reg_rpd    long_reg_rpd;
            } stack_or_reg;
            pdsc_address       handler;
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            pdsc_address       handler_data;
        } long_with_handler;

} pdsc_rpd;

SIZE - 40 bytes, ALIGNMENT - 8 bytes

See the Calling Standard for Alpha Systems for a full description.
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3.3. Instructions and Data Usage

3.3.1. Minimal Objects

Many sections may be missing from a still-viable object file. Sections may not be present due to the type of
the object file or to the contents of a particular program.

The .init and .fini sections of the text segment are typically not present in relocatable objects. They
contain code generated during final link.

The allocation of data in the "small" and "large" writable data sections (.sdata, .data, .sbss,
.bss) can be controlled by the user in some situations. See Section 3.3.6 for more details.

The .lit4 and .lit8 sections, which hold 4- and 8-byte literal values respectively, may be omitted from
an object file. Compilers may choose not to emit these sections.

The .xdata and .pdata sections, which contain exception-handling information, may not be present.
All pre-link objects with a non-empty text segment contain these sections because compilers are expected
to provide exception-handling information for their code. Statically linked executables will only contain
these sections if they include code which handles exceptions.  The linker identifies exception handling code
by looking for references to the _fpdata_size symbol. By default, shared objects will contain these
sections.  The .xdata and .pdata sections are required if a shared object includes exception handling
code or if it is used in conjunction with another shared object that includes exception handling code.

Although most objects contain both text and data segments, only one loadable segment is required for an
object to be loadable. A minimal pre-link object file may contain no sections.

3.3.2. Position-Independent Code (PIC)

Position-independent code is generated code that is not constrained to any particular location in the virtual
address space. Eventually, code must be assigned to a portion of the address space where it can execute.
However, on Tru64 UNIX, code is kept position-independent as long as possible.

The implementation of position-independent code in eCOFF relies upon address tables to store full virtual
addresses for procedures and data locations invoked or referenced in the text segment. Programs refer to
these addresses using a technique called GP-relative addressing.

Most eCOFF objects have address tables that hold 64-bit addresses. Address tables in shared objects are
called Global Offset Tables (GOTs) and are found in the .got section. Address tables for relocatable and
static objects are called literal address pools and are found in the .lita section.

Address table entries are accessed in code by adding a signed 16-bit offset to the currently active GP value,
which is stored in the $gp register:

        ldq t12,-31656(gp)

Multiple GP ranges can be associated with a program, each corresponding to a different portion of the
address table. See Section 2.3.4 for details.

In some cases, special instruction sequences may be required to update the contents of the $gp register. In
particular, the GP value used by a procedure may or may not be the same as the value used by the calling
code. Under most circumstances, the called procedure's GP value is calculated when a procedure is
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invoked. Upon completion of the procedure's execution, the calling code's GP value must be reestablished.
Refer to the Calling Standard for Alpha Systems for details.

Different kinds of objects use address tables in different ways:

• Relocatable Objects

Pre-link objects usually have a .lita section with associated section relocation information. The
literal address pool contains addresses that must be adjusted at link time.

• Static Executables

Addresses in static executables are fixed at link time. The image must be loaded and executed at
addresses the linker has chosen. Library addresses as well as segment base addresses are known at
link time.

Static executables store addresses in a .lita section that encompasses one or more GP ranges.
The contents of the address table are accessed by means of the GP value or values, which are also
fixed at link time.

• Shared Objects

Each .lita entry in the input object files is relocated by the linker to form the GOT in the output
object. The loader may need to update the GOT entries when mapping the process image. The
addresses are then absolute and may be extracted at run time to obtain the final locations of
referenced items.

The loader may also update GOT entries at run time, such as when it replaces lazy text stubs with resolved
procedure addresses or dynamically loads new objects.

The GOT may contain entries for nonsymbolic text and data addresses. These are known as local GOT
entries. The GOT may also contain entries for unresolvable symbols; which are either set to NULL or to the
address of a lazy text stub routine.

Special semantics are associated with multiple GP ranges in shared objects. See Section 6.3.3.3 for details
on multiple GOT representation and usage.

Code can be only partially position independent. For example, shared libraries can be mapped anywhere in
the address space that is not in conflict with previously mapped objects, but executable objects must be
mapped at their link-time base addresses. Dynamic executables are thus partly PIC because their own
segment addresses are fixed, but the addresses of shared libraries they use are not.

Code may also be position dependent, or nonPIC.  The linker and om generate nonPIC code.  On Alpha
systems, relocatable objects must always be PIC.

3.3.3. Lazy-Text Stubs

This section applies to shared objects only. See Section 6.3.4.5 for related information.

Final addresses may be unknown at link time for subroutines that are defined in shared libraries and called
by dynamic executables. Instructions reference these routines in an address-independent manner, and the
dynamic loader uses run-time resolution, or "lazy binding", to locate the procedure's absolute location the
first time it is invoked.
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Stubs are specially constructed code fragments used for this run-time symbol resolution. They serve as
placeholders for the definitions of functions that cannot be resolved at static link time. The linker builds the
stub for each called function and allocates GOT table entries that point to the stubs. The stubs themselves
are inserted in the .text section of the shared object file by the linker.

A stub looks like this:

stub_xyz:
    ldq  t12, got_index(gp)           //load register with .got entry
                                      //  of lazy text resolver
    lda  $at, dynsym_index_low(zero)  //load register with external
    ldah $at, dynsym_index_high($at)  //  symbol's .dynsym index
    jmp  t12, (t12)                   //jump to lazy text resolver

The first time the procedure is called, its stub is invoked. The stub, in turn, calls the loader to resolve the
associated symbol. The dynamic loader then replaces the stub address with the correct function address,
which is used for subsequent calls.

The calling standard requires that when control actually reaches the procedure's entry point, register $27
must contain the procedure value of the newly loaded routine–as if no intermediate processing had
occurred.

3.3.4. Constant Data

Constant data is data that cannot be changed over the course of program execution. It can include constants
appearing in the source program, constants that are generated during the compilation process (usually
addresses), and literal values (also referred to as immediate values).

Constant data may appear in any data section. It is likely to appear in the .lita, .lit4, .lit8,
.rconst, and .rdata sections. Compilers and other object file producers may make varying choices
concerning data placement in object file sections.

The literal sections contain only literal values sorted by sizes. 4-byte literals are stored in the .lit4
section, 8-byte literals in the .lit8 section, and 8-byte (64-bit) addresses in the .lita section. However,
these sections do not necessarily contain all literals in the program. String literals, for example, are assigned
to the .data section (or .rconst section when the -read_only_strings compiler option is
specified).

There are compile-time, link-time, and run-time constants. Examples of compile-time constants include
numeric constant data such as floating-point constants and literals appearing in the source file. Examples of
link-time constants include addresses that are fully resolved at link time. Examples of run-time constants
include addresses established by the dynamic loader.

The linker places the .rconst section and all three literal sections with the text segment because they
contain nonwritable data. The advantage of mapping constant data with a program's read-only segment is
that it allows the data to be shared among processes.

The .rdata section contains constant data with values that may not be known until run time (such as
global symbol addresses). For shared objects, the .rdata section is mapped with the data segment so the
loader can perform relocations for that section without affecting the shareability of text or page table pages.
If there are no dynamic relocations, the .rdata section may be mapped with the text segment.
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3.3.5. INIT/FINI Driver Routines

Every compilation unit in an executable or shared library has the opportunity to contribute initialization or
termination code to be run at startup and exit, respectively. INIT routines perform initialization actions and
are run automatically at load time or by the routine dlopen(). FINI routines are termination functions
that are executed by dlclose() or at program termination by exit().

The .init and .fini sections consist of a series of calls to the initialization and termination routines.
These calls, or drivers, are generated by the linker. They are not present in pre-link objects.  The .init
driver is invoked by a call from startup code in /usr/lib/cmplrs/cc/crt0.o, which must be linked
into every executable object file.

The driver code in the .init and .fini sections has the following characteristics:

• No associated symbolic information

• No associated call frame information

• Use of self-relative code for jumping to the routines; therefore, no use of the GOT table or GP value

The initialization and termination routines themselves are in the .text section and have the following
characteristics:

• No arguments

• No return value

• Defined in one of the objects or archives being linked

Figure 3-2 presents a graphical overview of the INIT/FINI mechanism for shared objects:
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Figure 3-2 INIT/FINI Routines in Shared Objects

 

For static executables, the first call is to the main object's __istart symbol instead of rld_run_init.
The dynamic loader is not involved.

System tools can generate initialization and termination routines. For example, global constructor and
destructor routines for static objects are implemented as INIT/FINI routines by the C++ compiler.
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The INIT/FINI mechanism is used for allocation and deallocation of thread-specific data. Every object
using TLS has its own INIT routine to take care of the TLS data associated with that object. The purpose of
this INIT routine is to allocate a TSD key that will be used for the object's TLS for the duration of the
object mapping. See Section 3.3.9 for more information on TLS data.

3.3.5.1. Linking

INIT and FINI routines can be included implicitly, by prefix recognition, or explicitly, by option
processing. With either linking method, as the routine's symbols are identified, a list determining the
execution order is built. When the list is complete, code to invoke the routines is generated by the linker
and placed in the .init and .fini sections.

To link explicitly, the -init and -fini linker options are used with a symbol parameter. The symbol
should meet the criteria listed above for INIT and FINI routines.

To link implicitly, it is necessary to conform to naming and usage conventions. A symbol is recognized as
an initialization or termination symbol if:

• Automatic recognition of special symbols is not disabled.

• The symbol is defined in an object included in the link.

• The symbol bears the correct prefix (__init_ or __fini_).

• The symbol is a procedure.

Library archives may contain aptly named routines that are not implicitly linked into an object as INIT or
FINI routines. The reason this situation can occur is that prefix recognition alone is not sufficient cause to
extract a module from an archive.

Figure 3-3 INIT/FINI Recognition in Archive Libraries

On the other hand, if the archived object is already linked into the object, prefix recognition will apply to
routines contained in that module. Explicit inclusion can be used to ensure an archived routine is included
as an initialization or termination routine in all cases. See the Programmer's Guide for more information on
linking with archive libraries.
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The linker's -no_prefix_recognition option disables implicit linking of INIT and FINI routines.

3.3.5.2. Execution Order

This section describes the execution order of initialization and termination routines in dynamic and static
executables.  It also covers the determining factors used by the linker and loader to establish this order.

3.3.5.2.1. Dynamic Executables

The INIT driver routine for each shared object is executed after INIT drivers for all of its dependencies.
Dependencies are processed in a post-order traversal of the dependency graph. The dependency graphs
shown in this section are based on link-line ordering (a left "sibling" appears first on the link line) as well
as the shared library dependency information.

FINI drivers are executed in precisely the reverse order of INIT drivers.

Figure 3-4 INIT/FINI Example (I)

INIT order:  libc.so libB.so libA.so a.out
FINI order:  a.out libA.so libB.so libc.so

Cyclic dependencies are handled using a first-seen approach, while still conforming to the preceding rules.
For example:

Figure 3-5 INIT/FINI Example (II)
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INIT order:  libA.so libB.so a.out

Initialization and termination routines may also be executed when shared objects are loaded and unloaded
dynamically during run time. dlopen() runs INIT routines for any shared objects that it loads.
dlclose() runs FINI routines for each shared object that it unloads.

Figure 3-6 INIT/FINI Example (III)

INIT order before dlopen call: libc.so a.out.

Figure 3-7 INIT/FINI Example (IV)

INIT order after dlopen call:  libm.so libfoo.so.
FINI order after dlopen call:  libfoo.so libm.so a.out libc.so.

3.3.5.2.2. Static Executables

For static executables, the execution order for initialization and termination routines is determined at link
time. The linker establishes the the execution order for INIT routines by the order in which they are
encountered within an object's external symbol table and by the ordering of objects on the command line. It
also takes into account the ordering of archive libraries on the command line. The INIT routines from each
archive are executed in the reverse order of their occurrence on the command line. For example:

$ld x.o y.o z.o libm.a libfoo.a

INIT order: libfoo.a libm.a x.o y.o z.o
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FINI order: z.o y.o x.o libm.a libfoo.a

3.3.5.2.3. Ordering Within Objects

It is also possible to have multiple INIT or FINI routines within an object. The number of initialization or
termination functions that can be included from a single object is unlimited. When multiple routines are
encountered in an input object, they are placed as a group within the overall ordering.

If both methods of linking are used, explicitly linked initialization routines are executed prior to the
implicitly linked routines for that object. Because the FINI order is always the opposite of the INIT order,
any explicitly linked termination routines are executed last.

If the linker's range-table generating routines are present, they execute first and last, respectively in
INIT/FINI ordering on a per-object basis. These initialization routines set up a PC-range table that enables
exception-handling. They execute first so that range information is added before other INIT routines are
executed. These termination routines run last so that all others are run before range information is removed.
These precautions allow other INIT and FINI routines to utilize exception handling.

3.3.5.2.4. Subsystem Control of INIT/FINI Order

Compilers may need to generate initialization and termination routines and to control the order in which
they execute. For this reason, subsystem-generated INIT and FINI routines are distinguished from user
INIT and FINI routines.

The linker recognizes a subsystem-generated routine by the prefixes __INIT_ and __FINI_. Routines
recognized with the __INIT_ prefix always run prior to any routines recognized with the __init_ prefix
within the same executable or shared library. FINI routines recognized with the __FINI_ prefix always run
after any routines recognized with the __fini_ prefix. Subsystem INIT and FINI routines also run,
respectively, before and after any routines added by a user using the linker's -init and -fini switches.

All routines with the __INIT_ prefix execute in alphabetic order, and all routines with the __FINI_ prefix
execute in reverse alphabetic order. For a name of the form __INIT_ALPHANAME, the ALPHANAME
portion should be encoded as a variable-length hexadecimal string. The string will contain one or more hex
digits followed by an underscore.

INIT routines generated by the linker for exception-handling, speculative execution, and thread-local
storage run prior to all other INIT routines. The associated FINI routines run last.

3.3.6. Initialized Data and Zero-Initialized Data (bss)

Writable user-program data is divided between data (initialized data) and bss (zero-initialized data)
sections, which may then be subdivided according to data element size. Zero-initialized data consists of
program variables whose values are not specified at compile time. Initialized data includes all variables that
are explicitly initialized in declaration statements.

One example of zero-initialized data is Fortran commons. Another is uninitialized C data, such as the
global variable "count" declared:

        int count;



77

Note that a C-global or C-static data item explicitly initialized to zero (that is int count = 0;) may be
placed in an initialized data section, even though its value is the same as if it were part of bss.

The primary advantage of separating initialized and uninitialized data is to save space in the object file. All
bss data elements are set to the same value (zero).  The only information required in the object file is a
description of the run-time size and location of the bss sections. This description is found in the .bss and
.sbss section headers.

Zero-filled memory is allocated for the bss segment when an object is mapped into memory. Because the
.bss and .sbss raw data sections do not require space in the object file, their section header size field
reports the size of the section in the process image instead of in the object file.

To take advantage of all available space, zero-initialized data immediately follows initialized data in the
image. An object can have bss sections but no bss segment.  If the data in the bss sections does not exceed
the size of the leftover space in the last page of the data segment, the bss segment will be empty. This
situation is illustrated in Figure 3-8.

Figure 3-8 Data and Bss Segment Layout (1)

For the same reason, some bss data can potentially be present in the data segment, even if a separate bss
segment exists. This situation is illustrated in Figure 3-9.
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Figure 3-9 Data and Bss Segment Layout (II)

When part or all of the bss segment is contained in the last page of a data segment, that portion of the data
page must be initialized to zero in the corresponding raw data area of the object file.

The division of initialized and uninitialized data by size may split writable data into "small" (.sdata,
.sbss) and "large" (.data, .bss) sections. It may be possible to exploit this division by grouping
frequently used data together in a section. This strategy may enhance performance by reducing page faults.
The size division may also allow post-link tools, such as om, to generate more efficient code sequences for
accessing data items.

The default maximum value for an item allocated in a "small" section is eight bytes. Some compilers accept
a -G option with a parameter to specify the maximum size of a "small" data item.  However, the default
compilers on Tru64 UNIX do not.

When speaking of item size, note that an aggregate data item is considered as a whole. For example, a
string of ten characters has a size of ten bytes.

3.3.7. Permissions/Protections

When a process image is created for a program, loadable segments are assigned access permissions. These
are determined by the file's MAGIC number and the segment type.
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Table 3-1 Segment Access Permissions

Image Segment Access Permissions

OMAGIC text, data, bss Read, Write, Execute

NMAGIC text Read, Execute

NMAGIC data Read, Write

NMAGIC bss Read, Write, Execute

ZMAGIC text Read, Execute

ZMAGIC data Read, Write

ZMAGIC bss Read, Write, Execute

3.3.8. Exception Handling Data

Exception handling is provided on the system to cope with unusual conditions. The object file contains two
sections for storing exception-handling data structures. The declaration of these structures is shown in
Section 3.2.

The object file sections .xdata and .pdata work together to provide exception-handling support. The
.xdata section contains the run-time procedure descriptor table and the .pdata section contains code
range descriptors. Exception information is produced for all pre-link object files. The linker produces
exception information for shared executables and shared libraries because they will potentially be utilized
in conjunction with other shared executables or shared libraries that rely on exception handling. The linker
also produces exception information for nonshared executables that reference _fpdata_size, a linker-
defined symbol which represents the number of entries in the .pdata section.

A code range descriptor associates a contiguous sequence of addresses with a run-time procedure
descriptor. The .pdata code range descriptors are ordered by run-time address. The ranges never overlap.
The last .pdata entry is an end marker, which may be followed by padding.

The code range descriptor points into both the text segment and the run-time procedure descriptors, as
shown in Figure 3-10. The relationship between code range descriptors and procedure descriptors can be a
many-to-one relationship. Also note that a code range descriptor may not have an associated procedure
descriptor.
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Figure 3-10 Exception-Handling Data Structuers

The virtual address space containing the text section of the object file is portioned into code ranges. Each
code range descriptor has only one address, which indicates the beginning of the range. The range is
implicitly ended just prior to the beginning address of the subsequent range. The final code range descriptor
serves to end the range begun by the next-to-last descriptor, not to start a new range.

The Programmer's Guide and the Calling Standard for Alpha Systems provide detailed explanations of the
exception-handling mechanisms supported by Tru64 UNIX. Related man pages such as pdsc(4) and
exception_intro(3) are also available for quick reference.

C++ uses its own unique exception mechanism. An example illustrating the symbol table representation of
C++ exception information can be found in Section 9.2.6.

3.3.9. Thread Local Storage (TLS) Data

Threads are available on Tru64 UNIX as a way to increase processor utilization and overall application
performance. Thread Local Storage (TLS) provides a way for an application writer to declare data that has
multiple instances, one per thread. The object file has specific structures designed to store and manage
TLS. These structures and the impact of TLS on the object file and symbol table are described here. For
general information about threads programming, see the Guide to DECthreads.
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Three object file sections are devoted to TLS data: .tlsdata, .tlsbss, and .tlsinit. The TLS
region consists of the .tlsdata and .tlsbss sections. The .tlsinit section,which may be mapped
with the object file's text or data segments, contains initialization information for .tlsdata. Objects
containing TLS data are distinguished by the presence of these sections.

Structures outside the object file are used to reference TLS data. The Thread Environment Block (TEB) is
an architected structure provided by system libraries. One of the fields in the TEB is the address of the
Thread Specific Data (TSD) array, which contains pointers into the TLS region. Each object containing
TLS will be allocated one or more TSD entries. In each thread, the TSD entries will contain the address of
the start of a region of that thread's TLS area.

Figure 3-11 Thread Local Storage Data Structures

Because the TLS region is allocated dynamically and is unique per-thread, no address information can be
recorded in the object file. All other attributes of the TLS region can be determined at link time and are
recorded in the object file in the TLS data and TLS bss section headers.

The TLS data and bss sections occupy no space in the object file and do not have associated section
relocation information.

The TLS INIT section contains the data which will be used to initialize each thread's instance of the TLS
data section at run time.  The TLS INIT section can contain relocation information. Only R_REFQUAD and
R_REFLONG relocations are allowed, and the relocations must reference nonTLS symbols or sections.
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The TLS region for a shared object consists of the initialized and zero-initialized TLS data defined by that
object. The TLS region is composed of two sections: the TLS data section containing initialized TLS data
(.tlsdata) and the TLS bss section (.tlsbss) containing zero-initialized TLS data.

If a shared object contains TLS data, an entry in the GOT (for the special symbol __tlsoffset )
contains the offset into the TSD array to the array element that points to the TLS area. If this is a multiple-
GOT shared object, the entry may be duplicated in each GOT. The value of the GOT entry is filled in at
load time when the TLS initialization routine calls the loader with the allocated TSD key value.

If a non-shared object contains TLS data, the address of __tlsoffset will normally be accessed through
a .lita entry that contains the value 2048, the offset to TSD key 256.

Special symbol types and relocation types are specific to TLS. See Chapter 5 and Chapter 4 for more
information.

3.3.10. User Text and User Data Sections

The linker contains provisions for creating and relocating user-defined object file sections. This feature was
implemented for a specific customer at the customer's request. It is very rarely used and minimally
supported. This section is designed to provide only a general overview.

Any number of user sections can be added to an object file. See Section 2.3.2 for the placement of the user
sections in the various object file layouts.

The section header for a user section has the same semantics as those used for other object file sections.
The section flags are set to STYP_REG. The user creating the section chooses the section name. User text
sections are distinguished from user data sections by their addresses. User text sections have text segment
addresses, and user data sections have data segment addresses.

For user sections, the linker synthesizes special symbols for the start and end addresses of each section.
These symbols take the form:

        _fuser_section<section_name>
        _euser_section<section_name>

where <section_name> is the name in the section header. These linker-defined symbols are always
strong symbols.

The linker also combines like-named user sections in multiple input files to form a single section in the
output file.

User sections can only have external relocation records.

Namespace issues can arise due to the user's naming of these sections. It is the responsibility of the user to
protect against and recognize errors caused by namespace issues.

3.4. Language-Specific Instructions and Data Features

Procedures with alternate entry points require multiple run-time procedure descriptors. See the Calling
Standard for Alpha Systems for details.

C++ has exception handling facilities in addition to those discussed in this chapter.
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C++ global constructors and destructors are implemented as initialization and termination routines invoked
by driver code stored in the .init and .fini sections.
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4. Relocation

The purpose of relocation is to identify and update storage locations that need to be adjusted when an
executable image is created from input object files at link time. Relocation information enables the linker to
patch addresses where necessary by providing the location of those addresses and indicating the type of
adjustments to be performed. Relocation entries in the section relocation information are created by the
assembler, compiler, or other object producer, and the address adjustments are performed by the linker.

The linker performs relocation fixups after determining the linked object's memory layout and selecting
starting addresses for its segments. During partial links, relocation information is updated and preserved for
subsequent links. Relocation updates for partial links include converting external relocation entries to local
relocation entries and retargeting relocation entries to new section addresses. See Section 4.3.2.1 for details.

Relocation information contained in an object file can have three distinct representations:

• Relocation entries identified in section headers. These are the relocation entries referred to in this
document as "normal" or "actual".

• Compact relocation records, produced by the linker and consumed by profiling tools. Compact
relocations are stored in the .comment section.

• Dynamic relocations, which are present only in shared objects. Dynamic relocation may be performed
for shared objects at load time.

The first two forms of relocation information are discussed in this chapter. Note that the discussion of the
second form is limited to Section 4.4. The third form is covered in Chapter 6.  Figure 4-1 summarizes
which kinds of objects contain which kinds of relocation information.

Figure 4-1 Kinds of Relocations

Actual relocation entries are organized by raw data section. Not all object file sections necessarily have
relocation entries associated with them. For example, bss sections do not have relocation entries because
they do not have raw data to relocate. Section headers for sections with relocation entries contain pointers
to the appropriate section relocation information, as shown in Figure 4-2.



85

Figure 4-2 Section Relocation Information in an Object File

Note that the ordering of section headers does not necessarily correspond to the ordering of raw data and
section relocation information. Consumers should rely on the section header to access this information.

4.1. New or Changed Relocations Features

Version 3.13 of the object file format does not introduce any new relocations features.

4.2. Structures, Fields, and Values for Relocations

4.2.1. Relocation Entry (reloc.h)

struct reloc {
        coff_addr    r_vaddr;
        coff_uint    r_symndx;
        coff_uint    r_type  : 8;
        coff_uint    r_extern: 1;
        coff_uint    r_offset:6;
        coff_uint    r_reserved:11;
        coff_uint    r_size:6;
};

SIZE - 16 bytes, ALIGNMENT - 8 bytes

Relocation Entry Fields
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r_vaddr

Virtual address of an item to be relocated.

r_symndx

For an external relocation entry, r_symndx is an index into external symbols. For a local relocation
entry, r_symndx is the number of the section containing the symbol. Table 4-1 lists the section
numbering.

There are exceptions to this interpretation:

• If the s_nreloc field in the section header overflows, this field contains the number of
relocation entries for the section. This possibility applies only to the first entry in a section's
relocation information.  See Section 4.2.3 for more information.

• For entries of type R_LITUSE, this field contains a subtype. See Table 4-3.

r_type

Relocation type code.  Table 4-2 lists all possible values.

r_extern

Set to 1 for an external relocation entry.
Set to 0 for a local relocation entry.

r_offset

For an entry of type R_OP_STORE, r_offset is the bit offset of a field within a quadword. For
other relocation types, the field is unused and must be zero.

r_reserved

Must be zero.

r_size

For an entry of type R_OP_STORE, r_size is the bit size of a field. For R_IMMED_* entries, it is a
subtype. See Table 4-4. For other relocation types, the field is unused and must be zero.
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Table 4-1 Section Numbers for Local Relocation Entries

Symbol Value Description

R_SN_NULL 0 no section

R_SN_TEXT 1 .text section

R_SN_RDATA 2 .rdata section

R_SN_DATA 3 .data section

R_SN_SDATA 4 .sdata section

R_SN_SBSS 5 .sbss section

R_SN_BSS 6 .bss section

R_SN_INIT 7 .init section

R_SN_LIT8 8 .lit8 section

R_SN_LIT4 9 .lit4 section

R_SN_XDATA 10 .xdata section

R_SN_PDATA 11 .pdata section

R_SN_FINI 12 .fini section

R_SN_LITA 13 .lita section

R_SN_ABS 14 for R_OP_xxxx constants

R_SN_RCONST 15 .rconst section

R_SN_TLSDATA 16 .tlsdata section

R_SN_TLSBSS 17 .tlsbss section

R_SN_TLSINIT 18 .tlsinit section
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Table 4-2 Relocation Types

Symbol Value Description

R_ABS 0x0 Relocation already performed.

R_REFLONG 0x1 Identifies a 32-bit reference to symbol's virtual address.

R_REFQUAD 0x2 Identifies a 64-bit reference to symbol's virtual address.

R_GPREL32 0x3
Identifies a 32-bit displacement from the global pointer to a symbol's
virtual address.

R_LITERAL 0x4
Identifies a reference to a literal in the literal address pool as an offset from
the global pointer.

R_LITUSE1 0x5 Identifies an instance of a literal address previously loaded into a register.

R_GPDISP 0x6
Identifies an lda/ldah instruction pair that is used to initialize a
procedure's global-pointer register.

R_BRADDR 0x7 Identifies a 21-bit branch reference to the symbol's virtual address.

R_HINT 0x8 Identifies a 14-bit jsr hint reference to symbol's virtual address.

R_SREL16 0x9 Identifies a 16-bit self-relative reference to symbol's virtual address.

R_SREL32 0xa Identifies a 32-bit self-relative reference to symbol's virtual address.

R_SREL64 0xb Identifies a 64-bit self-relative reference to symbol's virtual address.

R_OP_PUSH 0xc
Identifies a 64-bit virtual address to push on the relocation expression
stack.

R_OP_STORE 0xd
Identifies an address to store the value popped from the relocation
expression stack.

R_OP_PSUB 0xe
Identifies a symbol's virtual address to subtract from value at the top of the
relocation expression stack.

R_OP_PRSHIFT 0xf
Identifies the number of bit positions to shift the value at the top of the
relocation expression stack.

R_GPVALUE 0x10
Specifies a new gp value to be used for the address range starting with the
address specified by the r_vaddr field.

R_GPRELHIGH 0x11
Identifies the most significant 16 bits of a 32-bit from the global pointer to
a symbol's virtual address.

R_GPRELLOW 0x12 Identifies the least significant 16 bits of a 32-bit from the global pointer to
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a symbol's virtual address.

R_IMMED2 0x13 Indicates an instruction sequence that calculates an address.

R_TLS_LITERAL 0x14 Identifies the instruction that loads the TLS key.

R_TLS_HIGH 0x15
Identifies the most significant 16 bits of a 32-bit from the TLS region
pointer to a symbol's virtual address

R_TLS_LOW 0x16
Identifies the least significant 16 bits of a 32-bit from the TLS region
pointer to a symbol's virtual address.

Table Notes

1. The r_symndx field for the relocation type R_LITUSE is a subtype. The valid entries for this field
and their meanings are summarized in Table 4-3.

2. The r_size field for the relocation type R_IMMED is a subtype. The valid entries for this field and
their meanings are summarized in Table 4-4.

Table 4-3 Literal Usage Types

Symbol Value Description

R_LU_BASE 1
The base register of a memory format instruction (except ldah) contains a
literal address.

R_LU_BYTOFF 2 Should not be used.

R_LU_JSR 3 The target register of a jsr instruction contains a literal address.

Table 4-4 Immediate Relocation Types

Symbol Value Description

R_IMMED_GP_16 1 16-bit displacement from GP value

R_IMMED_GP_HI32 2 Most significant 16 bits of 32-bit displacement from GP value

R_IMMED_SCN_HI32 3 Most significant 16 bits of 32-bit displacement from section start

R_IMMED_BR_HI32 4
Most significant 16 bits of 32-bit displacement from instruction
following branch

R_IMMED_LO32 5 Least significant 16 bits of 32-bit displacement specified by last
R_IMMED_*_HI32
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4.2.2. Compact Relocation Subsection (of .comment section)

Compact relocation records are written into the free-form data area of the comment section. They are
identified by a tag type of CM_COMPACT_RLC in the comment header. The public versions of compact
relocation interfaces for producers and consumers are located in the header file cmplrs/cmrlc.h. See
Section 4.4 and Chapter 7 for more information.

4.2.3. Section Header

The section header contains a file pointer to the section's relocation information and the number of entries.
(See Section 2.2.3 for the declaration.) The number of relocation entries for a section is contained in the
section header field s_nrelocs. If that field overflows, the section header flag S_NRELOCS_OVFL is set
and the first relocation entry's r_symndx field stores the actual number of relocation entries for the
section. That relocation entry has a type of R_ABS and all other fields are zero, causing it to be ignored
during relocation.
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4.3. Relocations Usage

4.3.1. Relocatable Objects

An object is relocatable if it contains enough relocation information for the linker to successfully relocate
it. Relocatable objects can be produced by compiling without linking or by partial linking.

Compilers and assemblers always produce relocatable objects. By default, the relocatable object files
produced are passed to the linker to produce a non-relocatable executable object. Most compilers recognize
a -c option.  The -c option suppresses the link operation and writes the object file in its relocatable form.
For example, the following command produces a non-executable OMAGIC file named pgm.o.

$cc -c pgm.c

By means of partial linking, the linker can also produce a relocatable object. By default, the linker attempts
to produce an executable ZMAGIC file for which all relocation entries have been processed and removed.
To preserve relocation information, the linker's -r switch should be selected. For example, the following
command produces a non-executable OMAGIC file named a.out.

$ld -r pgm.o

Selection of the -r switch has other effects: common storage class symbol allocation is deferred until final
link and undefined symbol error messages are suppressed.

Relocatable objects have various uses. The most obvious is as input to a subsequent partial or final link
operation. All objects input to the linker are relocatable objects, regardless of how they are produced.
Multiple relocatable objects can be combined during a final link to produce an executable object. The
typical example of this process is when several separately compiled modules are created at different times
and later linked together to produce the final executable program. For example, the following steps produce
an executable ZMAGIC file named a.out.

$cc -c part1.c
$cc -c part2.c
$cc -c part3.c
$cc part1.o part2.o part3.o

Relocatable objects are also used for archives. Although files of any type may be archived, one important
use of archives is for user or system libraries. An example is the system library libc.a, which is linked
with many C programs. Objects in archive libraries must be relocatable to be linked with other object files
to make executable programs.

Relocatable objects may be used as loadable drivers, which are object files that are dynamically added to a
running kernel. Information is available in the System Administration Guide.

Relocatable objects can also be used by the bootlinker, which builds the kernel from object files at boot
time. Information is available in the System Administration Guide.

Some profiling tools require relocatable objects as input because they rebuild the object and require the
capability of rearranging raw data. However, on Tru64 UNIX, these tools rely on compact relocations,
which are an alternate form of relocation information.  Compact relocations are described in Section 4.4.
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4.3.2. Relocation Processing

This section describes the generic process of relocating object files from a high-level viewpoint. It does not
include details of address calculations, nor does it take into account the substantial variations in the
contents of a relocation entry's fields. For specifics, see Section 4.3.4.

Relocation involves tracking and updating references as the referenced items move in memory. At a
minimum, one relocation entry is required for each reference made to an item whose address may
potentially change. This address, pointed to by the reloc structure field r_vaddr, is the target address of
the relocation.  This address is adjusted whenever necessary to prevent it from becoming outdated. The
target address is located in one of the raw data sections of the object file.

The target address points to another item in the raw data. This item can be a data item, procedure, or any
program element that will potentially be mapped to a new memory location when the linker builds the
executable object.

Figure 4-3 Relocation Entry

Note that a many-to-one relationship may exist between relocation entries and target items. A target item
may be addressed multiple times in an object file's raw data, and a single target address reference may be
described by multiple relocation entries.

Taken together, the r_symndx field and r_extern bit track the position of the target item. If it is moved
to a new location, the target address is updated accordingly.

The value of the relocation is the distance that the tracked item will move in memory.

4.3.2.1. Local and External Entries

Relocation entries are used for several purposes:
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• Address references to unresolved symbols that will be imported from other objects.

• References to addresses within an object that may change when the object is linked at a different base
address or linked with other object files.

• Identification of address references that may be optimized at link time.

Relocation entries may be local or external. Local relocation entries are used for references to addresses
within an object. External relocation entries are used for references to any external symbols. In particular,
unresolved symbols references can only be represented by external relocation entries.

The r_extern flag is set in external relocation entries. This flag determines the interpretation of the
r_symndx field. For external entries, this field provides the external symbol table index of the referenced
symbol.

Figure 4-4 shows a sample external relocation entry.

Figure 4-4 External Relocation Entry

For an external entry, the value for relocation is the run-time address of the referenced external symbol. In
cases where the symbol is undefined in an input object, it must first be resolved. Figure 4-5 depicts this
process.
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Figure 4-5 Processing an External Relocation Entry

A local relocation entry has its r_extern flag cleared and tracks references by section.

Figure 4-6 shows a sample local entry.
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Figure 4-6 Local Relocation Entry

For a local entry, the value for relocation is the difference between a section's address in the input object
and the address of that section's data after linking. The section is identified by a relocation section type in
r_symndx. Figure 4-7 depicts this situation.

Figure 4-7 Processing a Local Relocation Entry
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To complete relocation for all entries, the base address for the final process image is required. The linker
can then use that address to patch all relocatable entries.

4.3.2.2. Relocation Entry Ordering

The ordering of relocation entries is sometimes significant. The diagram below shows the optional
relocation entry count and grouping of relocation entries according to GP range.

Figure 4-8  Relocation Entry Ordering Requirements

If a section requires an optional relocation entry overflow count, it must be in the first relocation entry.

Relocation processing tools require GP-relative relocations to be grouped by GP range. R_GP_VALUE
entries will effectively separate the groups of GP-relative relocation entries for each GP range. For a list of
GP-relative relocation types, see Section 4.3.3.2.

Some relocation types can only be used when paired with other relocation types. These relocation
groupings are:

• R_GPRELHIGH, R_GPRELLOW

• R_TLSHIGH, R_TLSLOW

• R_LITERAL, R_LITUSE

• R_OP_PUSH, R_OP_PSUB, R_OP_PRSHIFT, R_OP_STORE

An R_GPRELHIGH entry must be followed by one or more R_GPRELLOW entries.

An R_TLSHIGH entry must be followed by one or more R_TLSLOW entries.

An R_LITERAL entry may be followed by zero or more R_LITUSE entries.
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An R_OP_PUSH entry must be followed by exactly one R_OP_STORE entry. Zero or more R_OP_PSUB
and R_OP_PRSHIFT entries may be located between the R_OP_PUSH and R_OP_STORE entries.

4.3.2.3. Shared Object Transformation

Part of the linker's preparation of loading information for shared objects is to create dynamic relocation
entries from some of the actual relocation entries.

The linker must determine which relocation entries need to be converted to dynamic relocation entries.
Data references (R_REFQUAD and R_REFLONG relocation types) must be represented in the .rel.dyn
section if they are not in the .lita section. The .lita section is an exception because its contents are
mapped directly into the GOT. All other R_REFQUAD or R_REFLONG entries have an associated dynamic
relocation entry in the shared object file.

Dynamic relocation entries are not permitted for text addresses. The text segment is not mapped with write
permission, so text relocation fixups cannot be performed by the dynamic loader.

4.3.3. Kinds of Relocations

Relocations types can be grouped into the following categories:

• Direct Relocations

• GP-relative Relocations

• Self-relative Relocations

• Literal Relocations

• Relocations Stack Expressions

• Immediate Relocations

• TLS Relocations

The categories often overlap.

4.3.3.1. Direct Relocations

Direct relocations are independent entries; all of the information necessary to process them is self-
contained. The relocation target contains either the address of a relocatable symbol or an offset from that
address. They are used for simple address adjustments; addresses in the literal address pool (.lita
section), for example, will have associated direct relocation entries.

R_REFQUAD and R_REFLONG are direct relocation types. R_REFQUAD indicates a 64-bit address and
thus is normally used on Alpha systems. R_REFLONG indicates a 32-bit address and most often occurs
when the xtaso environment is in effect. These types of relocations are processed in the manner described
in Section 4.3.2.

The following special requirements exist for direct relocation entries for the .lita section:

• Only entries of type R_REFQUAD or R_REFLONG are permitted.
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• R_REFLONG entries pertain to the bottom 4 bytes of a .lita entry. The size of the entry is
unchanged, but an error is generated if the result overflows 4 bytes.

• All external entries must correspond to symbols whose value is zero prior to relocation.

4.3.3.2. GP-Relative Relocations

This class of relocations requires use of the GP value as a factor in the calculation. Note that the literal
relocations in Section 4.3.3.4 and Section 4.3.3.7 also fit this category.

The R_GPREL32, R_GPRELHIGH, R_GPRELLOW, and R_GPDISP relocation types are GP-relative.
They typically point to instructions that calculate or load addresses using a GP value. The R_GPRELHIGH
and R_GPRELLOW relocation types must be used together. The R_GPDISP relocation type is used for
instruction pairs that load the GP value.

A special-purpose GP-relative relocation entry specifies that a new GP range is in effect. The relocation
type for this entry is R_GPVALUE. The linker inserts R_GPVALUE entries at object module boundaries
during a partial link (ld -r) when the .lita section it is building would otherwise overflow. Entries of
this type appear in the .text section or the .rdata section.  These entries are local entries because they
are not tied to any symbol.

4.3.3.3. Self-Relative (PC-Relative) Relocations

This class of relocations require adjustments based on the current position in the text or data. Self-relative
relocations are also referred to as PC-relative relocations.

The R_SREL16, R_SREL32, and R_SREL64 relocation types apply to 16, 32, and 64 bit target addresses,
respectively.

Two more self-relative relocation types are R_BRADDR and R_HINT. R_BRADDR is used to identify
branching instructions whose targets are known at link time. R_HINT is used to adjust the branch-
prediction hint bits in jump instructions.

4.3.3.4. Literal Relocations

This category of relocations encompasses both literal relocations (type R_LITERAL) and literal-usage
relocations (type R_LITUSE), which work together to describe text references.

A literal relocation (type R_LITERAL) occurs on a load of an address from the .lita section. Any
associated R_LITUSE entries always directly follow the R_LITERAL entry.

The literal-usage entries are used for linker optimizations. Processing for these relocation entries is
optional. The linker and other tools may ignore these relocation entries with no risk of producing an
improperly relocated object file.

The advantage of literal-usage entries is that they enable link-time memory-access optimizations. These
relocation entries identify instructions which use a previously loaded literal. With this knowledge, the
linker is able to determine that certain instructions are unnecessary or can be altered to improve
performance. Optimization is performed only during final link and with an optimization level setting of at
least -O1.
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4.3.3.5. Relocation Stack Expressions

Relocation stack expressions constitute a sequence of relocation entries that must be evaluated as a group.
The purpose of stack expressions is to provide a way to represent complex relationships between
relocatable addresses and store results with bit field granularity. They are currently used only for exception-
handling sections.

An additional advantage of stack expressions is that they provide the capability to describe a new relocation
type without requiring tool support or code modification to recognize and execute a new r_type.
However, the greater flexibility of relocations expressions is offset by the fact that multiple entries are
necessary to describe a single fix-up.

Special relocation types are used to build relocation expressions. The types are:

• R_OP_PUSH

• R_OP_STORE

• R_OP_PSUB

• R_OP_PRSHIFT

An R_OP_PUSH entry marks the beginning of a sequence of relocation stack expressions and an
R_OP_STORE marks the end. The types of any intervening relocation entries should be either
R_OP_PRSHIFT to shift the top of stack value right or R_OP_PSUB to subtract an address from the top of
stack value.

An R_OP_STORE entry pops the value from the top of the expression stack and stores selected bits into a
field in a word in memory. The r_offset and r_size fields of a relocation entry are used to specify the
target bit field.

It is an error to cause stack underflow or to have values left on the stack when section relocation is
complete.

Currently, these relocation types are used exclusively for relocating the exception-handling data in
.xdata and .pdata. The reason this relocation is performed using the stack expression types is the need
to shift the address by two bits. Bit field granularity cannot be specified with other relocation types unless it
is implicit in the relocation type.

4.3.3.6. Immediate Relocations

Immediate relocations are used to describe the linker's optimization of literal pool references. If
optimization options are in effect, the linker will replace R_LITERAL and R_LITUSE entries with
R_IMMED entries wherever possible. This information is then used to generate compact relocations that
sufficiently describe all relocatable storage locations.

Immediate relocations can describe instruction sequences that calculate addresses by adding either a 16-bit
or 32-bit immediate displacement to a base address. R_IMMED entries always point to memory-access
instructions. The displacement is obtained from the instruction.

There are five types of immediate relocations. Subcodes in the r_size field identify them. The types are:

• R_IMMED_GP_16
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• R_IMMED_GP_32

• R_IMMED_SCN_HI32

• R_IMMED_BR_HI32

• R_IMMED_LO32

R_IMMED_GP_16 and R_IMMED_GP_32 entries identify address calculations performed by adding an
offset to the global pointer.  An R_IMMED_SCN_HI32 entry is paired with an R_IMMED_LO32 entry to
identify a pair of instructions which add a 32 bit displacement to the starting address of a section.  An
R_IMMED_BR_HI32 entry is paired with an R_IMMED_LO32 entry to identify a pair of instructions
which add a 32 bit displacement to the address of an instruction following a branch.

4.3.3.7. TLS Relocations

The types R_TLS_LITERAL, R_TLS_LOW, and R_TLS_HIGH are TLS-specific relocation types.

R_TLS_LITERAL is very similar to R_LITERAL, except it relates to a literal in the TLS data storage
area, the TSD array. R_TLS_LOW and R_TLS_HIGH entries are used as a pair to identify instructions
which load a TLS data address by adding a 32 bit offset to the TLS region pointer.  These relocation types
are identical to the R_GPRELHIGH and R_GPRELLOW relocation types except for the fact that the target
instructions for the TLS relocation entries calculate addresses using the TLS region pointer instead of the
GP value.

4.3.4. Relocation Entry Types

The type of a relocation entry (stored in the r_type field) describes the action the linker must perform.
This section discusses the purposes of the different types and provides examples of their use.

Relocation entry fields are interpreted differently based on relocation type. There also may be constraints
on fields' contents depending on the type. Some relocation entries are context sensitive and must be
preceded or followed by a particular entry. Some are size specific and the computed address must fall
within a specified range. Moreover, some types are constrained to be local entries only or are associated
with particular object file sections.

To describe the calculations performed by the linker, the following notation is used in the detailed
descriptions for each relocation type:

*_disp

The displacement field of whatever instruction is indicated.

GP

Current GP value; begins as the contents of aouthdr.gp_value for the final object.

new_scn_addr

The address of the tracked section of a local relocation entry, as calculated by the linker.

old_GP



101

GP value in the input object; begins as aouthdr.gp_value for the input object.

old_scn_addr

The contents of s_vaddr in the section header of the input object file for the tracked section of a
local relocation entry.

[r_vaddr]

The contents at the address r_vaddr; to be distinguished from the address itself.

SEXT

The constant immediately following is sign-extended.

stack

The relocation expression stack.

this_new_addr

Where r_vaddr will be after relocation .

this_new_scn_addr

Where the section containing r_vaddr will be after relocation, as calculated by the linker.

this_old_scn_addr

The contents of s_vaddr in the section header of the input object file for the section containing
r_vaddr.

tos

Top of relocation expression stack.

result

The result of the relocation, which is written back into the relocated r_vaddr in the object file that
the linker is producing.

4.3.4.1. R_ABS

Fields

r_vaddr Number of relocation entries if s_nreloc section header field has overflowed. This
number includes itself in the count. Otherwise, unused.

r_symndx Unused.

r_extern Unused.

r_offset Unused.
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r_size Unused.

Operation

N/A

Restrictions

N/A

Description

This relocation entry is used to indicate a relocation has already been performed or should not be
performed. No calculation is associated with such an entry.

The first entry in a relocation section is of type R_ABS if it contains the number of relocation entries in that
section (which is the case when the section header field s_nreloc overflows). This type can also be used
to pad relocation data or to delete relocation entries in place. In-place deletions of relocation entries are
likely to be performed during a partial link.

Example

An object file produced during a partial link has 99993 relocations associated with its .text section. A
listing of the entries begins with an R_ABS because the total number overflows s_nreloc:

         Vaddr            Symndx Type  Off Size Extern  Name

.text:

    0x0000000000018699       0     ABS           local <null>

4.3.4.2. R_REFLONG

Fields

r_vaddr Points to target address.

r_symndx External symbol index if r_extern is 1; section number if r_extern is 0.

r_extern Either 0 or 1.

r_offset Unused.

r_size Unused.

Operation

if (r_extern == 0)
    result = (new_scn_addr - old_scn_addr) + (int)[r_vaddr]
else
    result = EXTR.asym.value + (int)[r_vaddr]
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Restrictions

Result after relocation must not overflow 32 bits.

Description

A relocation entry of this type describes a simple address adjustment to the 32-bit value pointed to by
r_vaddr. R_REFLONG entries are most likely to occur when the compilation option -xtaso_short is
specified.

The relocated value may be unaligned.

Example 1

C code fragment:

extern int i;
void *p = (void *)(&i + 1);

Compile as follows:

$ cc -c -xtaso_short pgmname.c

Produces the following R_REFLONG entry:

                        ***RELOCATION INFORMATION***
          Vaddr         Symndx   Type  Off Size Extern  Name

.sdata:
    0x0000000000000000       0 REFLONG          extern  I

This relocation entry is necessary because the value of the pointer p depends on the address of the global
(common storage class) symbol i, whose address is yet to be determined. At the location indicated by
s_vaddr, the value 4 is stored, which will be added to the resolved address of i. The "4" represents the 4
bytes to the next integer storage location in memory after i's.

Example 2

From assembly code, the following declaration produces the same relocation entry as the previous example.

.long I

4.3.4.3. R_REFQUAD

Fields

r_vaddr Points to target address.

r_symndx External symbol index if r_extern is 1; section number if r_extern is 0.
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r_extern Either 0 or 1.

r_offset Unused.

r_size Unused.

Operation

if (r_extern == 0)
    result = (new_scn_addr - old_scn_addr) + (long)[r_vaddr]
else
    result = EXTR.asym.value + (long)[r_vaddr]

Restrictions

None.

Description

A relocation entry of this type describes a simple address adjustment to the 64-bit value pointed to by
r_vaddr. R_REFQUAD entries are most likely to occur in data sections and almost always are used for
relocation of the .lita section.

The relocated value may be unaligned.

Example 1

Small program:

#include <stdio.h>

main(){
    printf("printing!\n");
}

Relocation entries produced for its .lita section:

                        ***RELOCATION INFORMATION***
          Vaddr         Symndx   Type  Off Size Extern  Name

.lita:
    0x0000000000000070       1 REFQUAD          extern  printf
    0x0000000000000078       3 REFQUAD          local   .data

The .lita section consists of two entries, and each is relocated. One entry is external, tracking the routine
name printf, and one local, tracking an item in the .data section.

Example 2

A R_REFQUAD entry can also be produced by an assembly language statement such as:
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        .globl y
        .data
b:      .quad y

Relocation entry produced:

                        ***RELOCATION INFORMATION***
          Vaddr         Symndx   Type  Off Size Extern  Name

.data:
    0x0000000000000000       0 REFQUAD          extern  y

The variable b is allocated at s_vaddr in the .data section and will be updated by adding the address of
y when the symbol y is resolved.

4.3.4.4. R_GPREL32

Fields

r_vaddr Points to a 32-bit GP-relative value.

r_symndx External symbol index if r_extern is 1; section number if r_extern is 0.

r_extern Either 0 or 1.

r_offset Unused.

r_size Unused.

Operation

if (r_extern == 0)
    result = (new_scn_addr - old_scn_addr) + old_GP - GP +
             SEXT((int)[r_vaddr]
else
    result = EXTR.asym.value - GP + SEXT((int)[r_vaddr]

Restrictions

Signed result after relocation must not overflow 32 bits.

Description

A relocation entry of this type indicates a 32-bit GP-relative value that must be updated. If it is a local
entry, this value must be biased by the GP value for the input object file. In both cases, the current GP
value is subtracted to produce a result that is an offset from the GP.

Example 1

Local R_GPREL32 entries are produced for a many-case switch statement. For example, consider the
following C program:
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main(){
    int i;

    scanf("%d",&i);
    switch(i) {
        case 0:i++; break;
        case 1:i--; break;
        case 2:i+=2; break;
        case 3:i-=2; break;
        case 4:i+=3; break;
        case 5:i-=3; break;
        case 6:i++; break;
        default: i=0;
    }
}

A compiler may implement a switch statement with a "jump table", that is a code sequence containing
labels for each case and a jump statement selecting between them. For each case label, a relocation entry is
produced:

          Vaddr           Symndx Type  Off Size Extern  Name

.rconst:
    0x00000000000000d0       1 GPREL32          local   .text
    0x00000000000000d4       1 GPREL32          local   .text
    0x00000000000000d8       1 GPREL32          local   .text
    0x00000000000000dc       1 GPREL32          local   .text
    0x00000000000000e0       1 GPREL32          local   .text
    0x00000000000000e4       1 GPREL32          local   .text
    0x00000000000000e8       1 GPREL32          local   .text

Example 2

The following assembly code sequence also produces a R_GPREL32 entry:

        .globl z
        .data
a:      .gprel32 z

Relocation entry produced:

                        ***RELOCATION INFORMATION***
          Vaddr         Symndx   Type  Off Size Extern  Name

gprel32.o:

.data:
    0x0000000000000000       0 GPREL32          extern  z
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4.3.4.5. R_LITERAL

Fields

r_vaddr Points to a load instruction in the text segment. The value to be relocated is the
memory displacement from the $gp in the instruction.

r_symndx R_SN_LITA

r_extern Must be zero; all R_LITERAL entries are local.

r_offset Unused.

r_size Unused.

Operation

result = (new_scn_addr - old_scn_addr) + (SEXT((short)[r_vaddr]) +
         old_GP) - GP

Restrictions

The result after relocation for an R_LITERAL entry must not overflow 16 bits. .

R_LITERAL entries must be local and relative to the .lita section.

Description

A relocation entry of this type is produced when an instruction attempts to reference values in the literal-
address pool (.lita section). The instruction containing the reference accesses a .lita entry using the
GP value in effect and a signed 16-bit constant. The original address of the item has to be reconstructed and
then adjusted for the new location of the address table. The new address then has to be reconverted into a
GP displacement using the new GP value.

An R_LITERAL entry may or may not be followed by corresponding R_LITUSE entries. The
R_LITERAL entry is required but the R_LITUSE entries are not.

Example

R_LITERAL entries are used when an address is loaded from the literal address pool:

ldq     t12, -32664(gp)

Relocation entry produced:

                        ***RELOCATION INFORMATION***
          Vaddr         Symndx   Type  Off Size Extern  Name

.text:

    0x0000000000000038      13 LITERAL          local   .lita
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4.3.4.6. R_LITUSE: R_LU_BASE

Fields

r_vaddr Points to memory-format instruction.

r_symndx R_LU_BASE

r_extern Must be zero; all R_LITUSE entries are local.

r_offset Unused.

r_size Unused.

Operation

Check if displacement is within 16 or 32 bits. The displacement is calculated:

new_lit = [relocated literal belonging to correponding R_LITERAL]
disp = new_lit + lituse_disp - GP

Restrictions

A relocation entry of this type must follow either an R_LITERAL or another R_LITUSE entry with no
other types intervening.

r_vaddr must be aligned on a byte boundary.

Ignored if optimization level is not at least -O1.

Cannot remove the first load instruction unless this is the only corresponding R_LITUSE entry.

Description

This relocation entry is informational and indicates that the base register of the indicated instruction holds a
literal address. Note that a R_LITERAL entry, corresponding to an ldq instruction, precedes this entry.

Possible optimizations depend on the distance of the memory displacement from the GP value. If the
displacement is less than 16 bits from the GP, a single instruction suffices to describe the location. The
code sequence can be changed as shown:

ldq     rx, disp(gp)    R_LITERAL
ldq/stq ry, disp2(rx)   R_LITUSE(R_LU_BASE)

--
ldq/stq ry, disp3(gp)

The linker converts the R_LITUSE entry to an R_IMMED_GP16 for the transformed instructions.

If the displacement is within 32 bits of the GP, one memory access can be saved by replacing the first load
instruction with the faster ldah instruction.

ldq     rx, disp(gp)    R_LITERAL
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ldq/stq ry, disp2(rx)   R_LITUSE(R_LU_BASE)
--

ldah    rx, disp3(gp)
ldq/stq ry, disp4(rx)

The linker will convert the R_LITERAL and the R_LITUSE, respectively, to entries of type
R_IMMED_GP_HI32 and R_IMMED_GPLOW32.

This can currently only be done if exactly one R_LITUSE exists for the R_LITERAL.

Example 1

The following instructions represent a single use of an address literal:

0x100: ldq     a1, -32656(gp)  // R_LITERAL
0x104: lda     a1, 32(a1) // R_LU_BASE

Relocation entries produced:

                        ***RELOCATION INFORMATION***
          Vaddr         Symndx   Type  Off Size Extern  Name

.text:

    0x0000000000000100      13 LITERAL          local   .lita
    0x0000000000000104       1  LITUSE          local   R_LU_BASE

The potential optimization indicated by this R_LU_BASE is that the two instructions could possibly be
replaced by a single ldq instruction of the form:

ldq a1, <disp>(gp)

Example 2

The following instructions illustrate multiple R_LITUSE entries following an R_LITERAL entry:

0x130:      ldq     t0, -32736(gp) // R_LITERAL
0x134:      ldq     t1, 0(t0) // R_LU_BASE
0x138:      zap     t1, 0x2, t1
0x13c:      insbl   v0, 0x1, v0
0x140:      bis     t1, v0, t1
0x144:      stq     t1, 0(t0) // R_LU_BASE

Relocation entries produced are:

                        ***RELOCATION INFORMATION***
          Vaddr         Symndx   Type  Off Size Extern  Name

    0x0000000000000130      13 LITERAL          local   .lita
    0x0000000000000134       1  LITUSE          local   R_LU_BASE
    0x0000000000000144       1  LITUSE          local   R_LU_BASE
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4.3.4.7. R_LITUSE: R_LU_JSR

Fields

r_vaddr Points to jump instruction (in text segment).

r_symndx R_LU_JSR

r_extern Must be zero; all R_LITUSE entries are local.

r_offset Unused.

r_size Unused.

Operation

new_lit = [relocated literal belonging to correponding R_LITERAL]
this_new_addr = r_vaddr - this_old_scn_addr + this_new_scn_addr
branch_disp = prologue_size + new_lit - this_new_addr + 4
result = branch_disp / 4

Restrictions

Must follow either an R_LITERAL or another R_LITUSE entry with no other types intervening.

Result after relocation must not overflow 21 bits (size of branch displacement field in the branch
instruction format).

Description

A relocation entry of this type is informational only. It informs the linker that the indicated jump instruction
is jumping to an address previously loaded out of the literal address pool. The load instruction had an
associated R_LITERAL entry that precedes this relocation entry.

Under the right circumstances, the linker can optimize this sequence in several ways:

• The procedure prologue can be skipped if it is not needed to load a GP value for the procedure.

• The branch can be calculated and the instruction changed to a branch instruction.

• The preceding ldq can be removed.

The first two actions may be performed but not the last if other R_LITUSE entries correspond to the same
R_LITERAL.  These optimization are performed by the linker for optimization level 1 and greater.
Optimization cannot be done for external symbols that are weak symbols in a dynamic executable, hidden
symbols in a shared library, or unresolved.

Example

The following instructions illustrate the use of a literal as the target of a jump instruction:
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0x8:   ldq     t12, -32736(gp)  // R_LITERAL
0xc:   lda     sp,  -16(sp)
0x10:  stq     ra,  0(sp)
0x14:  jsr     ra,  (t12)       // R_LU_JSR

Relocation entries produced:

                        ***RELOCATION INFORMATION***
          Vaddr         Symndx   Type  Off Size Extern  Name

.text:

    0x0000000000000008      13 LITERAL          local   .lita
    0x0000000000000014       3  LITUSE          local   R_LU_JSR

The instructions identified by the R_LITERAL and R_LU_JSR entries in this example can be optimized.
The ldq instruction can be replaced with a NOP instruction and the jsr can be replaced with a bsr
yielding:

0x1200011a8:   ldq_u   zero, 0(sp)      // NOP
0x1200011ac:   lda     sp,  -16(sp)
0x120001110:   stq     ra,  0(sp)
0x120001114:   bsr     ra,  0x1200011d8

4.3.4.8. R_GPDISP

Fields

r_vaddr Points to the first of a pair of instructions: lda and ldah. Either instruction may
occur first.

r_symndx Contains the unsigned byte offset from the instruction indicated in r_vaddr to
the other instruction used to load the GP value.

r_extern Must be zero; all R_GPDISP entries are local.

r_offset Unused.

r_size Unused.

Operation

result = (old_GP - GP) + (this_old_scn_addr - this_new_scn_addr)
        + (65536 * high_disp) + low_disp

The result after relocation is written back into the instruction pair.

lda_disp = result
ldah_disp = (result + 32768) / 65536
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Restrictions

Must be a local relocation.

Must describe an lda/ldah instruction pair.

Result after relocation must not overflow 32 bits.

Description

A relocation entry of this type corresponds to two instructions in the code. The field r_vaddr points to
one instruction and the address of the other is computed by adding the value of r_symndx to r_vaddr.
This relocation entry occurs for each instruction sequence that loads the gp value. For instance, procedure
entry points typically include instructions which load their effective gp value. They are normally the first
instructions in a procedure's prologue.

Example

A simple example of an occurrence of the R_GPDISP entry is the program entry point:

main() {
}

Instructions generated:

0x0:    ldah    gp, 1(t12)      // R_GPDISP (r_vaddr)
0x4:    lda     gp, -32704(gp)  // R_GPDISP (r_vaddr + r_symndx)

Relocation entry produced:

          Vaddr         Symndx   Type  Off Size Extern  Name

.text:
    0x0000000000000000       4  GPDISP          local

There are situations where a procedure is called but the R_GPDISP entry is not required. In this case, the
gp_used field of the procedure's descriptor will be zero, and an R_LU_JSR optimization may cause the
prologue to be skipped. See the Calling Standard for Alpha Systems for details on when a procedure
requires calculation of a GP value.

4.3.4.9. R_BRADDR

Fields

r_vaddr Points to a branch instruction.

r_symndx External symbol index if r_extern is 1; section number if r_extern is 0.

r_extern Either 0 or 1.

r_offset Unused.
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r_size Unused.

Operation

if (r_extern == 0)
    this_new_addr = r_vaddr - this_old_scn_addr + this_new_scn_addr
    result =  ((new_scn_addr - old_scn_addr) +
               (branch_displacement * 4)
               + r_vaddr + 4 - this_new_addr) / 4
else
    this_new_addr = r_vaddr - this_old_scn_addr + this_new_scn_addr
    result = (EXTR.asym.value + (branch_displacement * 4)
             - this_new_addr) / 4

Restrictions

After relocation the result should be aligned on a 4-byte boundary.

The signed result must not overflow the 21-bit branch displacement field.

Description

A relocation entry of this type identifies a branch instruction in the code. The branch displacement is
treated as a longword (32-bit, or one instruction) offset. The branch target's virtual address is computed:

va <- PC + (4 * branch_displacement)

The branch displacement must be relocated.

The R_BRADDR relocation can only be used for local or static references because the displacement is fixed
at link time. Updating it at run time would require writing to the text segment, which is not permitted.
Without the ability to update at run time, symbol preemption for shared objects will not function.

Example

An example that will result in production of this type of relocation is a procedure call of a static function:

static bar(){
    int q =1;
    printf ("the value of q is %d\n", q);
}

main (){
    bar();
}

Instruction generated:

0x4c:       bsr     ra, 0x8(zero)    // R_BRADDR

Relocation entry produced:
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          Vaddr         Symndx   Type  Off Size Extern  Name

.text:

    0x000000000000004c       1  BRADDR          local   .text

4.3.4.10. R_HINT

Fields

r_vaddr Points to jump-format instruction.

r_symndx External symbol index if r_extern is 1; section number if r_extern is 0.

r_extern Either 0 or 1.

r_offset Unused.

r_size Unused.

Operation

if (r_extern == 0)
    this_new_addr = r_vaddr - this_old_scn_addr + this_new_scn_addr
    result = ((new_scn_addr - old_scn_addr) + (jump_disp * 4) +
              r_vaddr + 4 - this_new_addr) / 4
else
    this_new_addr = r_vaddr - this_old_scn_addr + this_new_scn_addr
    result = (EXTR.asym.value + (jump_displacement * 4) -
             this_new_addr) / 4

Restrictions

Result after relocation should be aligned on a 4-byte (instruction-size) boundary.

Description

Jump instructions are memory-format instructions where the 14 bits of the displacement field serve as a
hint for determining the jump target.  The hint is PC-relative and must be relocated to remain relevant. Note
that the use of hints is for optimization purposes only and takes advantage of branch-prediction logic built
into the architecture. If the hint values were not relocated, a correct executable program would still be
produced but potential performance improvements would be lost.

A characteristic of R_HINT entry processing is that instead of checking for overflow of the 14-bit result
after relocation, the linker truncates the result and writes it back without issuing an error or warning.

Example

Subroutine calls often cause R_HINT entries.

main() {
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    printf("hello\n");
}

Instructions generated:

0x14:      ldq     t12, -32752(gp)     // R_LITERAL
0x18:      jsr     ra, (t12), printf   // R_HINT

Relocation entries produced:

          Vaddr         Symndx   Type  Off Size Extern  Name

.text:

    0x0000000000000018       3  LITUSE          local   R_LU_JSR
    0x0000000000000018       0    HINT          extern  printf

Note that the same source line and corresponding instruction produce a second relocation entry of type
R_LITUSE_JSR. This second entry is also informational only. It indicates that the target register of the
jump instruction contains a previously loaded literal address.

4.3.4.11. R_SREL16

Fields

r_vaddr Points to a 16-bit self-relative value.

r_symndx External symbol index if r_extern is 1; section number if r_extern is 0.

r_extern Either 0 or 1.

r_offset Unused.

r_size Unused.

Operation

if (r_extern == 0)
    this_new_addr = r_vaddr - this_old_scn_addr + this_new_scn_addr
    result =  (new_scn_addr - old_scn_addr) + 
              SEXT((short)[r_vaddr]) + r_vaddr - this_new_addr
else
    this_new_addr = r_vaddr - this_old_scn_addr + this_new_scn_addr
    result = EXTR.asym.value - this_new_addr

Restrictions

The result after relocation must not overflow 16 bits.

Description
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A relocation entry of this type is identical to an R_SREL32 entry except for the size of the value being
adjusted.

Example

This type is currently not used by the compilation system.

4.3.4.12. R_SREL32

Fields

r_vaddr Points to a 32-bit self-relative value.

r_symndx External symbol index if r_extern is 1; section number if r_extern is 0.

r_extern Either 0 or 1.

r_offset Unused.

r_size Unused.

Operation

if (r_extern == 0)
    this_new_addr = r_vaddr - this_old_scn_addr + this_new_scn_addr
    result =  (new_scn_addr - old_scn_addr)
             + SEXT((int)[r_vaddr]) + r_vaddr - this_new_addr
else
    this_new_addr = r_vaddr - this_old_scn_addr + this_new_scn_addr
    result = EXTR.asym.value - this_new_addr

Restrictions

The result after relocation must not overflow 32 bits.

Description

A relocation entry of this type indicates a value that describes a reference as an offset to its own location. In
other words, the target address is computed by adding the contents of the relocation address ([r_vaddr])
to the address of the relocation (r_vaddr). To perform this relocation, the new location of r_vaddr
must be computed and subtracted from the new target address to provide the correctly adjusted self-
relative, offset which is then written back into the raw data.

Example

The code range descriptors that are generated for each object contain a 32-bit self-relative offset in the
rpd_offset field. See Section 3.2.1. The rpd_offset field contains an offset to the associated run-
time procedure descriptor in the .xdata section. The R_SREL32 entry identifies this value.

main(){
    printf("Printing\n");
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}

Relocation entry produced:

          Vaddr         Symndx   Type  Off Size Extern  Name

.pdata:

    0x0000000000000054      10  SREL32          local   .xdata

Note that this relationship between the .xdata and .pdata sections imposes a restriction on the distance
between the text and data segments. The run-time procedures in the .xdata section must be within reach of a
32-bit signed offset from the code range descriptors in .pdata.

4.3.4.13. R_SREL64

Fields

r_vaddr Points to a 64-bit self-relative value.

r_symndx External symbol index if r_extern is 1; section number if r_extern is 0.

r_extern Either 0 or 1.

r_offset Unused.

r_size Unused.

Operation

if (r_extern == 0)
    this_new_addr = r_vaddr - this_old_scn_addr + this_new_scn_addr
    result = (new_scn_addr - old_scn_addr) + (long)[r_vaddr]
             + r_vaddr - this_new_addr
else
    this_new_addr = r_vaddr - this_old_scn_addr + this_new_scn_addr
    result = EXTR.asym.value - this_new_addr

Restrictions

None.

Description

A relocation entry of this type is identical to an R_SREL32 entry except for the size of the value being
adjusted.

Example

This type is currently not used by the compilation system.
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4.3.4.14. R_OP_PUSH

Fields

r_vaddr 0 if r_extern is 1;  an unsigned offset within a section if r_extern is 0.

r_symndx External symbol index if r_extern is 1; section number if r_extern is 0.

r_extern Either 0 or 1.

r_offset Unused.

r_size Unused.

Operation

if (r_extern == 0)
    stack[++tos] = (new_scn_addr - old_scn_addr) + r_vaddr
else
    stack[++tos] = EXTR.asym.value

Restrictions

This relocation entry must be followed by an R_OP_STORE entry, withone or more R_OP_PSUB or
R_OP_PRSHIFT entries in between.

Stack can hold a maximum of 20 entries.

Description

A relocation entry of this type causes a value to be pushed onto the relocation stack. The value is generally
the target address of the relocation, which will be adjusted using subsequent R_OP_PSUB and
R_OP_PRSHIFT relocation calculations.

Example

A code range descriptor in the .pdata section contains a 32-bit field, begin_address, which is the
offset of the associated code range address from the beginning of the code range descriptor table. See
Section 3.2.1. This value is calculated by subtracting two addresses and storing the least significant 32 bits.
A series of three stack relocation entries is used to represent this offset calculation.

main(){
    foo();
}
foo(){
    printf("Printing\n");
}

Relocation entries produced for use in calculating the begin_address in foo's code range descriptor:

          Vaddr         Symndx   Type  Off Size Extern  Name

.pdata:
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    0x0000000000000030       1    PUSH          local   .text
    0x0000000000000000       3    PSUB          extern   _fpdata
    0x0000000000000078      11   STORE  0   32  local    .pdata

The following series of relocation entries will effectively perform the calculation:

(.pdata+0x78)  =  (long)(((.text+0x30)-&_fpdata) & 0xffffffff)

4.3.4.15. R_OP_STORE

Fields

r_vaddr Location to store calculated bit field.

r_symndx Section index of containing section.

r_extern Must be 0.

r_offset Bit offset from r_vaddr.   (Bit 0 is the least significant bit in little-endian
objects and the most significant bit in big-endian objects.  See Section 1.7.)

r_size Number of bits to store.

Operation

if (little_endian)
    rshift = r_offset
else
    rshift = 64 - (r_offset + r_size)
bitfield = ((long)[r_vaddr] >> r_offset) & ((1 << r_size) - 1)
bitfield <- stack[tos--]

Restrictions

Stack cannot be empty.

Description

A relocation entry of this type causes the value currently on the top of the relocation stack to be written into
a bit field specified by the entry. The bit field is described using a bit position and size in bits.  It should be
noted that bits are numbered differently depending on the endian-ness of the object.

Example

An example of the R_OP_STORE entry is given in Section 4.3.4.14.

4.3.4.16. R_OP_PSUB

Fields



120

r_vaddr 0 if r_extern is 1;  an unsigned offset within a section if r_extern is 0.

r_symndx External symbol index if r_extern is 1; section number if r_extern is 0.

r_extern Either 0 or 1.

r_offset Unused.

r_size Unused.

Operation

if (r_extern == 0)
    result = (new_scn_addr - old_scn_addr) + r_vaddr
    stack[tos] = stack[tos] - result
else
    result = EXTR.asym.value
    stack[tos] = stack[tos] - result

Restrictions

The relocation stack cannot be empty. This entry must fall somewhere between an R_OP_PUSH entry and
an R_OP_STORE entry.

Description

A relocation entry of this type causes the value at the top of the relocation expression stack to be popped,
adjusted by subtracting the address described by r_extern and r_symndx, and pushed back on the
stack.

Example

An example of the R_OP_STORE entry is given in Section 4.3.4.14.

4.3.4.17. R_OP_PRSHIFT

Fields

r_vaddr 0 if r_extern is 1;  an unsigned offset within a section if r_extern is 0.

r_symndx External symbol index if r_extern is 1; section number if r_extern is 0.

r_extern Either 0 or 1.

r_offset Unused.

r_size Unused.

Operation

if (r_extern == 0)
    result = (new_scn_addr - old_scn_addr) + r_vaddr
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    stack[tos] = stack[tos] >> result
else
    result = EXTR.asym.value
    stack[tos] = stack[tos] >> result

Restrictions

The stack cannot be empty. So this entry must fall somewhere between an R_OP_PUSH and an
R_OP_STORE.

Description

A relocation entry of this type causes the value at the top of the relocation expression stack to be popped,
adjusted by right shifting the value by the number of bits described by r_extern and r_symndx, and
pushed back on the stack.

Example

This relocation type is not currently used by the system compiler. A potential use of this relocation type
would be to convert a byte offset into an instruction offset. Right shifting a byte offset by two bits will
produce an instruction offset because Alpha instructions are 4 bytes wide.

The following assembly code will result in an R_HINT entry for the 14-bit instruction offset contained in
the hint field of a jsr instruction. See Section 4.3.4.10 for a description of the R_HINT entry.

0x3c    ldq        t12, -32752(gp)     /* &printf */
0x40    jsr        ra, (t12)

The R_HINT entry for the instruction at 0x40 could also be accomplished with a series of stack relocation
options:

.text:

    0x0000000000000000       2    PUSH          extern   printf
    0x0000000000000044       1    PSUB          local    .text
    0x0000000000000002      14 PRSHIFT          local    R_SN_ABS
    0x0000000000000040       1   STORE  0   14  local    .text

4.3.4.18. R_GPVALUE

Fields

r_vaddr Starting virtual address for new GP value.

r_symndx Constant that is added to the GP value in the a.out header to obtain the new GP
value.

r_extern Must be zero; all R_GPVALUE entries are local.

r_offset Unused.
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r_size Unused.

Operation

new GP = aouthdr.gp_value + r_symndx

Restrictions

This type of relocation entry cannot be external.

Description

A relocation entry of this type identifies the position in the code where a new GP value takes effect.
R_GPVALUE entries are inserted by the linker during partial links.

Example

A linked program that references 20,000 external symbols will have at least 3 GOT entries with 3
corresponding GP values. See Section 2.3.4. If the program has GP-relative relocation entries in both
.text and .rdata sections, two R_GPVALUE entries would be reported for each of these sections.

          Vaddr         Symndx   Type  Off Size Extern  Name

.text:
    0x0000000010084cf0   64000 GPVALUE          local
    0x00000000100cb190  111984 GPVALUE          local
.rdata:
    0x000000001000fa00   64000 GPVALUE          local
    0x000000001001b570  111984 GPVALUE          local

4.3.4.19. R_GPRELHIGH

Fields

r_vaddr Points to a memory format instruction (ldah).

r_symndx External symbol index if r_extern is 1; section number if r_extern is 0.

r_extern Either 0 or 1.

r_offset Unused.

r_size Unused.

Operation

See R_GPRELLOW relocation type.

Restrictions

Must be followed by at least one R_GPRELLOW.
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Relocated result must not overflow unsigned 32-bit range.

Description

A relocation entry of this type is invalid unless it is followed by at least one R_GPRELLOW entry. When an
R_GPRELHIGH entry is encountered, no calculation is performed. The relocation calculation is deferred
until the R_GPRELLOW entry is processed. See the R_GPRELLOW description for more information.

Example

See R_GPRELLOW.

4.3.4.20. R_GPRELLOW

Fields

r_vaddr Points to memory format instruction (ld* or st*).

r_symndx Must match R_GPRELHIGH.

r_extern Must match R_GPRELHIGH.

r_offset Unused.

r_size Unused.

Operation

low_disp = [r_vaddr].displacement
high_disp = [R_GPRELHIGH->r_vaddr].displacement
displacement = high_disp * 65536 + low_disp

if (r_extern = 0)
    result = displacement + (new_scn_addr - old_scn_addr) +
             (old_GP - GP)
else
    result = displacement + EXTR.asym.value + (old_GP - GP)

[R_GPRELHIGH->r_vaddr].displacement = (result+32768) >> 16
[r_vaddr].displacement = result & 0xFFFF

Restrictions

The R_GPRELHIGH/R_GPRELLOW relocations must be used as a pair or set. At least one R_GPRELLOW
entry follows each R_GPRELHIGH entry.

After relocation, the result must not overflow 32 bits.

The memory displacement for all R_GPRELLOW entries corresponding to the same R_GPRELHIGH must
match.

Description
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The R_GPRELHIGH/R_GPRELLOW entry pair is used to describe GP-relative memory accesses. The
R_GPRELHIGH entry indicates an ldah instruction. The R_GPRELLOW entry (or entries) indicates a load
or store instruction. If multiple R_GPRELLOW entries are associated with an R_GPRELHIGH, they must all
describe the same memory location. A relocatable address can be formed with the following computation:

addr = 65536 * high_disp + SEXT (low_disp)

To relocate this code sequence, the memory displacement fields in each instruction must be adjusted to
reflect changes in the target address they compute and in the GP value.

The reason these entries are treated as a pair is that sign extension of the low instruction's displacement
field can result in an off-by-one error that must be fixed by adding one to the high instruction's
displacement. This situation can only be detected if the instructions are considered together.

These relocation entries describe instructions that are primarily used for computing addresses in kernel
code.. The kernel is built without a .lita section, and kernel performance is enhanced by code that
calculates addresses directly instead of loading addresses from a .lita memory location. The code size,
on average, is unaffected by the kernel's use of this addressing method.

Example

Use the kernel build option "-Wb,-static" to compile the following sample code.

static int a;
foo(){
    a++;
}

Code generated for loading the address of "a":

0x0:        ldah   t0,  0(gp)
0x4:        lda    t0, 16(t0)

Relocation entries produced are:

          Vaddr         Symndx   Type  Off Size Extern  Name

.text:
    0x0000000000000000       5  GPHIGH          local   .sbss
    0x0000000000000004       5   GPLOW          local   .sbss

4.3.4.21. R_IMMED: GP16

Fields

r_vaddr Points to memory-format instruction.

r_symndx External symbol index if r_extern is 1; section number if r_extern is 0.



125

r_extern Either 0 or 1.

r_offset Unused.

r_size R_IMMED_GP16.

Operation

N/A

Restrictions

N/A

Description

A relocation entry of this type identifies an instruction that adds a 16-bit displacement to the GP value,
obtaining an address. The r_extern and r_symndx fields specify the external symbol or section to
which the calculated address is relative.

This relocation entry is created by the linker to indicate that an optimization has taken place because the
displacement is within 16-bits of the GP value.

Example

N/A

4.3.4.22. R_IMMED: GP_HI32

Fields

r_vaddr Points to memory-format instruction.

r_symndx Unused.

r_extern Unused.

r_offset Unused.

r_size R_IMMED_GP_HI32.

Operation

N/A

Restrictions

N/A

Description

A relocation entry of this type identifies an instruction that is part of a pair of instructions that add a 32-bit
displacement to the GP value. This instruction adds the high portion of the 32-bit displacement. The next
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R_IMMED_LO32 entry identifies the instruction containing the low portion of the displacement. More than
one subsequent R_IMMED_LO32 entry can share the same R_IMMED_GP_HI32 entry.

Example

N/A

4.3.4.23. R_IMMED: SCN_HI32

Fields

r_vaddr Points to memory-format instruction.

r_symndx Unused.

r_extern Unused.

r_offset Unused.

r_size R_IMMED_SCNHI32.

Operation

N/A

Restrictions

N/A

Description

A relocation entry of this type identifies an instruction that is part of a pair of instructions that add a 32-bit
displacement to the starting address of the current section. This instruction adds the high portion of the
displacement. The next R_IMMED_LO32 entry identifies the instruction with the low portion.

Example

N/A

4.3.4.24. R_IMMED: BR_HI32

Fields

r_vaddr
Points to a memory-format instruction following a branch (br, bsr, jsr, or
jmp) instruction.

r_symndx Specifies a byte offset from r_vaddr to the branch instruction.

r_extern Unused.

r_offset Unused.

r_size R_IMMED_BRHI32.
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Operation

N/A

Restrictions

N/A

Description

A relocation entry of this type identifies an instruction that is part of a pair of instructions that add a 32-bit
displacement to the address of the instruction following a branch (br, bsr, jsr, or jmp). The branch
must precede this instruction. The r_symndx field specifies a byte offset from r_vaddr to the branch
instruction. The instruction identified by this relocation entry adds the high portion of the displacement.
The next R_IMMED_LO32 entry identifies the instruction with the low portion of the displacement.

Example

N/A

4.3.4.25. R_IMMED: LO32

Fields

r_vaddr Points to a memory-format instruction.

r_symndx External symbol index if r_extern is 1; section number if r_extern is 0.

r_extern Either 0 or 1.

r_offset Unused.

r_size R_IMMED_LO32.

Operation

N/A

Restrictions

N/A

Description

A relocation entry of this type identifies an instruction that is part of a pair of instructions that add a 32-bit
displacement to a base address. This instruction adds the low portion of the displacement. This relocation
entry is combined with the previous R_IMMED_GP_HI32, R_IMMED_SCN_HI32, or
R_IMMED_BR_HI32 entry. The r_extern and r_symndx fields specify the external symbol or section
to which the calculated address is relative.

Example

N/A
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4.3.4.26. R_TLS_LITERAL

Fields

r_vaddr Points to an instruction that loads the TSD key for initiating a thread local storage
reference – actually, not the key itself but key * 8, which gives the offset of the
TLS pointer in the TSD array.

r_symndx R_SN_LITA

r_extern Must be zero; all R_TLS_LITERAL entries are local.

r_offset Unused.

r_size Unused.

Operation

result = (new_scn_addr - old_scn_addr) +
         (SEXT((short)[r_vaddr]) +old_GP) - GP

Restrictions

The result after relocation for an R_TLS_LITERAL entry must not overflow 16 bits.

R_TLS_LITERAL entries must be local and relative to the .lita section.

Description

A relocation entry of this type is very similar to an R_LITERAL entry. An R_TLS_LITERAL entry
identifies an instruction that uses a GP displacement to load an the address of the symbol __tlsoffset
from the .lita section.

The value of the __tlsoffset symbol is fixed at run time to be the TSD array offset of the TLS pointer.
The symbol can occur anywhere in the GOT or .lita section. The linker-defined symbol __tlskey points
to one of the instances of the __tlsoffset symbol.

The linker processes the R_TLS_LITERAL relocation by adjusting the GP offset in the displacement of
the target instruction.

Example

Routines that reference TLS addresses will have at least one R_TLS_LITERAL entry for the load of the
__tls_offset value.

__declspec(thread) long foo;
main(){
    foo = 2;
}

Code generated will include the instruction:
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0x14:        ldq  at, -32752(gp)

Relocation entry produced:

          Vaddr         Symndx   Type  Off Size Extern  Name

.text:
    0x0000000000000014      13 TLSLITE          local   .lita

4.3.4.27. R_TLS_HIGH

Fields

r_vaddr Points to memory-format instruction.

r_symndx External symbol index if r_extern is 1; section number if r_extern is 0.

r_extern Either 0 or 1.

r_offset Unused.

r_size Unused.

Operation

See R_TLS_LOW description.

Restrictions

Must be followed by R_TLS_LOW entry.

Description

See R_TLS_LOW.

Example

See R_TLS_LOW.

4.3.4.28. R_TLS_LOW

Fields

r_vaddr Points to memory-format instruction.

r_symndx External symbol index if r_extern is 1; section number if r_extern is 0.

r_extern Either 0 or 1.
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r_offset Unused.

r_size Unused.

Operation

low_disp = [r_vaddr].displacement
high_disp = [R_TLS_HIGH->r_vaddr].displacement
displacement = high_disp * 65536 + low_disp

if (r_extern = 0)
    result = displacement + (new_scn_addr - old_scn_addr)
else
    result = displacement + EXTR.asym.value

[R_TLS_HIGH->r_vaddr].displacement = (result+32768) >> 16
[r_vaddr].displacement = result & 0xFFFF

Restrictions

External relocation entries of this type are limited to TLS symbols.

Local relocation entries of this type are restricted to the TLS sections .tlsdata and .tlsbss.

The relocated result must not exceed 32 bits.

Description

The linker must handle R_TLS_HIGH and R_TLS_LOW entries as a pair. The pairs of relocation entries
must be in sequence starting with R_TLS_HIGH. The order and location of the instructions associated with
these relocation entries are not restricted.

Example

The load of a TLS symbol's address requires an R_TLS_HIGH/R_TLS_LOW entry pair.

__declspec(thread) long foo;
main(){
    foo = 2;
}

Code generated:

0x0c:        call_pal  rduniq
0x10:        ldq  v0,  96(v0)
0x14:        ldq  at, -32752(gp)
0x18:        addq v0, at, v0
0x1c:        ldq  v0, 0(v0)
0x20:        ldah v0, 0(v0)
0x24:        stq  t0, 0(v0)
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Relocation entries produced:

          Vaddr         Symndx   Type  Off Size Extern  Name

.text:
    0x0000000000000020       0 TLSHIGH          extern  foo
    0x0000000000000024       0  TLSLOW          extern  foo

4.4. Compact Relocations

Compact relocations are a highly compressed form of relocation records designed for the use of profiling
tools and object restructuring tools. By default, they are generated by the linker for all fully linked
executable objects and recorded in the object's .comment section. The linker produces this information
using libmld.a APIs, which implement the reading and writing of compact relocations. Compact
relocations are not produced for images linked with the following linker options: -r, -om, or -ncr. See
Chapter 7 for the format of the .comment section.

Compact relocations must provide crucial relocation information in much less space than the space required
for actual relocation entries. This goal is accomplished by employing a heuristic function to predict
relocations. For some sections, this heuristic is highly accurate. Detailing many records in the object file
becomes unnecessary because the algorithm can be used instead to recreate many of the actual relocation
entries.

The current implementation contains only enough relocation information to drive tools that restructure an
executable's .text, .init, and .fini sections. It is sufficient for compact relocations to handle text
segment relocations only because the current consumers (Atom-based tools) change only these sections.
There is currently no algorithm to predict data relocations.

The interfaces for compact relocations continue to evolve. These interfaces are defined and described in the
header file cmplrs/cmrlc.h. This section describes the on-disk file format of compact relocations and
the producer and consumer algorithms.

4.4.1. Overview

The procedure for creation of compact relocations is as follows:

1. Generate a list of predicted relocations using heuristics.

2. Compare the predicted relocations to the actual relocation entries (which are input data to the compact
relocations producer).

3. Wherever a "miss" occurs (that is, the predicted and actual entries do not match) output a compact
relocation record.

The procedure for the use of compact relocation records follows:

1. Generate the list of predicted relocations using the same heuristics as the compact relocations
producer.

2. Compare the expanded compact relocations data with predicted relocations to reconstruct the actual
relocation entries.
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See Section 4.4.3 for more details.

4.4.2. File Format

Compact relocations are stored in a subsection of the .comment section. The linker and other tools do not
need to be aware of the details of the internal structure of the compact relocation subsection. This
knowledge is encapsulated in the cmrlc_* routines found in libmld.a.

The on-disk format of the compact relocations data consists of the following components, in order:

• Version identifier

• Compact relocations file header

• Compact relocations section headers (for each section)

• Compact relocations tables (for each section)

• Expression stack relocations tables (for each section)

• GP value tables (for each section)

Code may only assume that the version and the file header are contiguous. To access other structures, it is
necessary to rely on the location information in the file header.

4.4.2.1. Compact Relocations Version

The compact relocation section begins with a version identifier, which has the following structure:

struct {
        unsigned int   version_major;
        unsigned int   version_minor;
};

SIZE - 8 bytes, ALIGNMENT - 4 bytes

The version identifier allows the format of the compact relocations to change from one release to another
while providing a mechanism for tools to work on binaries with either the old or new formats. The version
identifiers are separate from the header because the format of the header itself may change from release to
release.

The major version identifier is incremented whenever a change in the compact relocation algorithms affects
the external interface. For example, adding support for data-related relocation information would require
the major version identifier to be incremented. Simple bug fixes that correct problems with the external
interface should not cause the major version identifier to be incremented.

The minor version identifier is incremented whenever the compact relocation algorithms change without
affecting the external interface. For example, changing the heuristic to further compact the stored relocation
information would require the minor version identifier to be incremented. If the consumer routines see that
an object has an old minor version number, they can call a matching version of the heuristic to correctly
reconstruct the relocation information.
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4.4.2.2. Compact Relocations File Header

The version identifier is followed by a high-level header structure that stores the sizes and locations of the
other tables with compact relocations information:

struct cmrlc_file_header {
        /*
         * Total number of elements in each sub-table.
         */
        unsigned long scn_num;    /* section header table */
        unsigned long rlc_num;    /* compact relocation table */
        unsigned long expr_num;   /* expression relocation table */
        unsigned long gpval_num;  /* GP value table */

        /*
         * Relative file offset from start of compact relocation data
         * to each sub-table.
         */
        unsigned long scn_off;
        unsigned long rlc_off;
        unsigned long expr_off;
        unsigned long gpval_off;
};

SIZE - 64 bytes, ALIGNMENT - 8 bytes

Each of the *_num fields indicates the number of entries in the corresponding tables. Each of the *_off
fields contains a relative file offset from the start of the compact relocations .comment subsection to the
start of the corresponding table. If any of the tables are not present for a particular program, the *_num and
*_off fields should be set to zero.

4.4.2.3. Compact Relocations Section Header

One or more compact relocations section headers follow the compact relocations file header. Each section
header has the following structure:

struct cmrlc_file_scnhdr {
        char           name[8];    /* section name */

        /*
         * Number of elements for this section in each sub-table.
         */
        unsigned long  rlc_snum;
        unsigned long  expr_snum;
        unsigned long  gpval_snum;

        /*
         * Index from start of table to this section's elements.
         * (This is an element index, not a byte offset.)
         */
        unsigned long  rlc_indx;
        unsigned long  expr_indx;
        unsigned long  gpval_indx;

        /*
         * Flag: True if compact relocation table is sorted by
         * increasing virtual address.
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         */
         unsigned long  rlc_sorted:1;
         unsigned long  :63;
};

SIZE - 64 bytes, ALIGNMENT - 8 bytes

One compact relocation section header is created for each eCOFF object file section for which compact
relocation data is stored. This section header is unrelated to the eCOFF section header structure except for
the name field, which connects the two.

Each of the *_num fields indicates the number of entries in the corresponding table for this object file
section. If the *_num field is non-zero, the corresponding *_indx field contains the index of the start of
that section's entries within the table.

The rlc_sorted field indicates whether the compact relocation table entries for this section are sorted
by virtual address.

If an object file section does not have entries in one of the tables for a particular program, the
corresponding fields should be set to zero.

4.4.2.4. Compact Relocations Table

Compact relocation tables follow the compact relocation section headers. Each compact relocation table
consists of an array of structures:

struct cmrlc_file_rlc {
    unsigned v_offset;
    union {

unsigned word;
struct {
    unsigned type:5;
    unsigned :27;
} common;
struct { /* GPDISP */
    unsigned type:5;
    unsigned lda_offset:27;
} gpdisp;
struct { /* EXPRESSION */
    unsigned type:5;
    unsigned index:27;
} expr;
struct { /* REF*, SREL*, GPREL32 */
    unsigned type:5;
    unsigned rel_scn:5;
    unsigned count:12;
    unsigned :10;
} addrtype;
struct {         /* IMMED: GP_HI32, SCN_HI32, BR_HI32 */
    unsigned type:5;
    unsigned subop:6;
    unsigned br_offset:21;
} immedhi;
struct {        /* IMMED: all other sub-opcodes */
    unsigned type:5;
    unsigned subop:6;
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    unsigned rel_scn:5;
    unsigned :16;
} immedlo;
struct { /* VADJUST */
    unsigned type:5;
    signed adjust:27;
} vadjust;
struct { /* BRADDR, HINT */
    unsigned type:5;
    unsigned rel_scn:5;
    unsigned :22;
} other;

    } info;
};

SIZE - 8 bytes, ALIGNMENT - 4 bytes

/*
 * Values for 'type' field.
 */
enum cmrlc_rlctypes {
    CMRLC_REFLONG=1,       /* unpredicted R_REFLONG */
    CMRLC_REFQUAD=2,       /* unpredicted R_REFQUAD */
    CMRLC_GPREL32=3,       /* unpredicted R_GPREL32 */
    CMRLC_GPDISP=4,        /* unpredicted R_GPDISP */
    CMRLC_BRADDR=5,        /* unpredicted R_BRADDR */
    CMRLC_HINT=6,          /* unpredicted R_HINT */
    CMRLC_SREL16=7,        /* unpredicted R_SREL16 */
    CMRLC_SREL32=8,        /* unpredicted R_SREL32 */
    CMRLC_SREL64=9,        /* unpredicted R_SREL64 */
    CMRLC_EXPRESSION=10,   /* unpredicted R_OP_* expression */
    CMRLC_IMMEDHI=11,      /* unpredicted R_IMMED for high part */
    CMRLC_IMMEDLO=12,      /* unpredicted R_IMMED for low part */
    CMRLC_NO_RELOC=13,     /* correct mispredicted relocation */
    CMRLC_VADJUST=14,      /* adjust base for succeeding 'v_offset's */
    CMRLC_TLS_HIGH=15,     /* unpredicted R_TLS_HIGH */
    CMRLC_TLS_LOW=16       /* unpredicted R_TLS_LOW */
};

/*
 * Maximum value for 'count' field in 'addrtype' relocations.
 */
#define CMRLC_COUNT_MAX ((1<<12) - 1)

The number of elements in the array is determined by the corresponding *_num field in the section header.

The v_offset field specifies the virtual address of each relocation entry as a byte offset from a base
address. Initially, the base is the starting virtual address of the current section. If relocations are required at
addresses that cannot be expressed as a 32-bit offset from the section's start address, CMRLC_VADJUST
relocation entries are used to extend the addressing range. However, this feature is not fully supported.

The value of the type field determines how to interpret the remainder of a compact relocation structure.

The lda_offset field specifies an instruction offset (byte offset divided by 4) from the relocation entrys
virtual address to the lda instruction in an R_GPDISP entry's ldah/lda pair. This design does not
support ldah/lda pairs that are separated by more than 2^29 bytes.
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The rel_scn field indicates the ID of the section to which this relocation is relative. It uses the R_SN_*
values from the header file reloc.h.

The count field is used to specify consecutive relocation entries that are identical.  The count field can
be used in this manner for R_REFLONG, R_REFQUAD, R_SREL16, R_SREL32, R_SREL64, and
R_GPREL32 entries. Two relocation entries are identical if they have the same type and relative section.
Two relocation entries are consecutive if the difference in their virtual addresses is equal to the natural size
for the relocation type (16 bits for R_SREL16; 32 bits for R_REFLONG, R_SREL32, and R_GPREL32;
and 64 bits for R_REFQUAD and R_SREL64). A count value of zero is not allowed. The count field
reduces the impact of mispredicting the relocations for jump tables.

4.4.2.5. Stack Relocation Table

Expression stack relocation information is stored separately. Each stack relocation table entry has the
following structure:

struct cmrlc_file_expr {
        unsigned long  vaddr;
        unsigned       type:5;
        unsigned       rel_scn:5;
        unsigned       offset:6;  /* CMRLC_EXPR_STORE only */
        unsigned       size:6;    /* CMRLC_EXPR_STORE only */
        unsigned       last:1;    /* true for last reloc in expr */
        unsigned       :9;
        unsigned       reserved;
};

SIZE - 16 bytes, ALIGNMENT - 8 bytes

/*
 * Values for 'type' field.
 */
enum cmrlc_exprtypes {
        CMRLC_EXPR_PUSH=1,     /* R_OP_PUSH */
        CMRLC_EXPR_PSUB=2,     /* R_OP_PSUB */
        CMRLC_EXPR_PRSHIFT=3,  /* R_OP_PRSHIFT */
        CMRLC_EXPR_STORE=4     /* R_OP_STORE */
};

Expression stack compact relocation records are stored in a separate table because each record requires
more space than other types of compact relocation records. Entries in this table are grouped into sequences
of relocation entries that form a single expression. The first entry in each table starts a sequence. The last
entry in each sequence has its last field set to one. A new sequence starts immediately after the end of the
previous sequence.

The start of each sequence is referenced by a CMRLC_EXPRESSION entry in the section's compact
relocation table. The index field of that entry points to the first entry in a stack relocation sequence. All
sequences in the stack relocation table should have a corresponding CMRLC_EXPRESSION entry in the
compact relocation table.

4.4.2.6. GP Value Tables

Additional tables called GP value tables are used to store GP range information. GP values are kept in
tables separate from other compact relocations to reduce the processing required to map a virtual address to
the corresponding active GP value.
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Each GP value table consists of an array of these structures:

struct {
        unsigned long     vaddr
        unsigned          gp_offset
        unsigned          reserved
};

SIZE - 16 bytes, ALIGNMENT - 8 bytes

Each additional GP range after the first range has an entry in the table. (The first range is described by the
GP value in the file's a.out header.) Therefore, a single-GOT program will have no entries in its GP value
tables.

If an executable's sections have different numbers of GP ranges, gpval_num should be set to describe the
section with the largest number of ranges. eCOFF sections with fewer GP ranges must still have GP value
tables with gpval_num entries. Sections with short GP value tables can duplicate their last GP value table
entry until the table is the proper length.

The vaddr field contains the virtual address where the new range starts. vaddr must point within the
section to which this GP value table corresponds. The new GP value is computed by adding gp_offset
to the GP value in the file's a.out header.

4.4.3. Detailed Algorithm for Compact Relocations Production

In order to produce compact relocations, a tool must have a set of actual relocation entries and the raw data
to which those relocation entries apply. It should then apply the following algorithm to create a set of
matching compact relocations:

1. Remove any actual relocation entries not needed to describe the .text, .init, or .fini sections.

2. Convert the remaining external relocation entries to local relocation entries.

3. Run the prediction heuristic function to construct a set of predicted relocation entries from the raw
data.

4. Compare the predicted relocation entries to the remaining actual relocation entries and create a
compact relocation record for any mismatches.

5. Compress any sequences of consecutive, identical R_REF*, R_SREL*,or R_GPREL32 entries.

6. Set the rlc_sorted field if the compact relocation entries are stored in a sorted order.

The tool should first remove any actual relocation entries that are not needed to describe the .text,
.init, or .fini sections. Compact relocation entries describe only these sections, so any others should
be removed to save space. In general, any relocation entry relative to one of these sections must be saved.
Also, any self-relative relocation entry that points inside one of these sections must be saved. Because
R_GPDISP entries point to instructions that are implicitly relative to text addresses, any R_GPDISP
entries within the .text, .init, or .fini sections must also be preserved.  Finally, any R_REFLONG,
R_REFQUAD, and R_GPREL32 entries in the .text, .init, or .fini sections must be saved because
these relocation entries would indicate the presence of address constants in these sections. Note that
R_LITERAL and R_LITUSE entries describe addresses in the .lita or .got section, so they do not
need to be saved.
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A tool must take special care when analyzing expression stack (R_OP_*), R_IMMED, and
R_GPRELHIGH/R_GPRELLOW entries. It is not possible to determine if one of these entries needs to be
saved without analyzing it in the context of its other related relocation entries.  For instance, an expression
stack relocation must be saved if any relocation in its expression is relative to the .text, .init, or
.fini sections. The same is true for sequences of R_IMMED entries or sequences of
R_GPRELHIGH/R_GPRELLOW entries.

Any R_GPVALUE entries must also be handled specially. These relocation entries must be added to their
section's GP value table.  They should then be removed from the list of actual relocation entries used to
create compact relocations.

The second step in the algorithm is to convert any remaining actual relocation entries from external to
local.  The compact relocations only exist in fully linked executables with no undefined symbols.  Thus,
external relocation entries are not needed.  An external relocation entry is converted to a local relocation
entry by setting its r_extern field to zero and changing its r_symndx field to the appropriate R_SN_*
constant.

The third step is to run the prediction heuristic function over the raw data for which these actual relocation
entries apply. This produces a set of predicted relocation entries.

Then compare the predicted relocation entries to the actual relocation entries as follows:

1. If a match exists between a predicted relocation entry and an actual relocation entry at the same virtual
address, do nothing.

2. If a predicted relocation entry and an actual relocation entry at the same virtual address do not match,
write a compact form of the actual relocation entry to the compact relocation data file.

3. If only a predicted relocation entry exists for a particular virtual address, write a compact
CMRLC_NO_RELOC record to the data file at this virtual address.

4. If only an actual relocation entry exists for a particular virtual address, write a compact form of the
actual relocation entry to the compact relocation data file.

Creating a compact relocation entry from an actual relocation entry is fairly straightforward except in the
case of an expression stack relocation sequence.  First, create entries in the stack relocation table for each
relocation entry in the sequence. Normally, this sequence starts with an R_OP_PUSH entry and ends with
an R_OP_STORE entry.  The last entry should have the last field set to one. Then create an
EXPRESSION compact relocation entry whose index field points to the first entry in the stack relocation
table for this expression.  (This can only be done for a sequence that describes a complete expression.)

The fifth step is to compress any sequences of R_REF*, R_SREL*, or R_GPREL32 entries that are
consecutive and identical . Such a sequence exists if all relocation entries in the sequence have the same
relocation type, are relative to the same rel_scn value (R_SN_* constant), and have v_offset fields that
increase by the natural size of the relocation type (for example, 8 bytes for REFQUAD, 2 bytes for
SREL16).  Such sequences can be replaced with a single compact relocation entry that has the sequence's
type and rel_scn value. The v_offset field should be that of the first relocation entry in the sequence,
and the count field should be set to the number of relocation entries in the sequence.

The final step is to set the rlc_sorted field in the compact relocation section header. If the compact
relocations are stored in order of increasing v_offset values, this field should be set to one. Otherwise, it
should be set to zero.
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4.4.4. Detailed Algorithm for Compact Relocations Consumption

A consumer tool can read back the compact relocation entries if it has the compact relocation information
and the raw data that they describe. The consumer tool can use this information to regenerate the actual
relocation entries by following this algorithm:

1. Expand any R_REF*, R_SREL*, or R_GPREL32 compact relocation entries whose count field is
greater than one.

2. Run the prediction heuristic function to construct a set of predicted relocation entries from the raw
data.

3. Compare the predicted relocation entries to the compact relocation entries and reconstruct the actual
relocation entries.

The first step in this algorithm just undoes the compression step (step five) in the production algorithm.

The second step runs the same prediction heuristic that was used in the production algorithm.  To guarantee
that the generated predicted relocation entries are the same as when the compact relocation entries were
produced, it is critical that the heuristic function is the same.  It is also critical that the raw data is the same
as when the compact relocation entries were produced.

The final step compares the predicted relocation entries with the stored compact relocation entries as
follows:

1. If only a predicted relocation entry exists for a particular virtual address, report the predicted relocation
entry.

2. If a CMRLC_NO_RELOC entry exists at the same virtual address as a predicted relocation entry, do not
report a relocation entry at this virtual address.

3. If a compact relocation entry other than CMRLC_NO_RELOC exists at the same virtual address as a
predicted relocation entry, report the compact relocation entry.

4. If only a compact relocation entry exists for a particular virtual address, report the compact relocation
entry.

The basic strategy for compact relocations consumption is to step through both the predicted
relocation entries and the stored compact relocation mismatch data for a given section in order to
reconstruct the actual relocation entries for that section.

4.5. Language-Specific Relocations Features

Relocation entries may be generated for language-specific compiler-generated external symbols. For
example, they are often generated in Fortran programs for the procedure for_set_reentrancy and in
C++ programs for exception-handling labels.
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5. Symbol Table (V3.13)

One of the chief tasks of the compilation process is the production of a symbol table, which is a collection
of data structures whose purpose is to store type, scope, and address information about program data.
Compilers and assemblers create the symbol table. It is read and may be modified by linkers, profiling
tools, and assorted object manipulation tools. It also contains information required for debugging.

For large applications, a single compilation can involve many program components, including source files,
header files, and libraries. Data from all of these files must be described in the symbol table.

The Tru64 UNIX eCOFF symbol table, when present, comprises a large portion of the physical object file
and is often considered a stand-alone entity. It is divided into numerous sections, including a header section
that is used for navigation. The contents of the symbol table are shown in Figure 5-1.

Figure 5-1 Symbol Table Sections

The symbol table has a hierarchical design.  The sections storing local symbols, local strings, relative file
descriptors, procedure descriptors, line numbers, auxiliary symbols, and optimization symbols are divided
into subtables and organized by file.  Local symbols, local strings, and optimization symbols are further
broken down by procedure. Figure 5-2 depicts this hierarchy.
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Figure 5-2 Symbol Table Hierarchy

A particular symbol table may not contain all sections, for one of the following reasons:

• Relative file descriptors are present in linked objects only.

• The line number, auxiliary symbol and optimization symbol tables are produced only when debugging
information is requested.

• Symbol table information may be partially or entirely removed by post-processing tools.

• Optimization symbols are not present in older object files (V3.12 and prior)

The function of each symbol table section is summarized below:

• The symbolic header stores the sizes and locations of all other symbol table sections.

• The line number table enables debuggers to map machine instructions to source code lines.



142

• The procedure descriptor table contains call-frame information as well as pointers to a procedure's
local symbols, line numbers and optimization entries.

• The local symbol table describes procedures, static and local data, and user-defined types.

• The external symbol table stores information about global symbols.

• The relative file descriptor table contains a post-link file descriptor table index mapping for each file in
the compilation.

• The local and external string tables store local and external symbol names, respectively.

• The file descriptor table stores the sizes and locations of each subtable produced for contributing
source and include files.  It also contains miscellaneous information about each file, such as the source
language and the level of symbolic information.

• The auxiliary symbol table contains data type information for local and external symbols.

• The optimization symbols section stores procedure relative information, including extended source
location information and optimized debugging information.

Several tools are available to view the contents of the symbol table.  See the stdump(1), odump(1),
and nm(1) man pages.

This chapter covers symbol table organization and usage, concentrating on debugging issues in particular.
The version of the symbol table covered is V3.13. The dynamic symbol table built by the linker is
discussed separately in Section 6.3.3.

5.1. New or Changed Symbol Table Features

Version 3.13 of the symbol table includes the following new or changed features:

• 64-bit auxiliary support (see Section 5.3.7.3)

• Parameters with static storage and unallocated parameters (see Section 5.2.11)

• New optimization symbols section (see Section 5.3.3)

• Extended Source Location Information (see Section 5.3.2.2)

• New representation for procedures with no text (see Section 5.3.6.1)

• Modified variant record representation (see Section 5.3.8.11)

• New function pointer representation (see Section 5.3.8.5)

• Block symbol added for alternate entry prologue size (see Section 5.3.6.7)

• Address of locally stripped FDRs set to addressNil (see Section 5.3.1.2)

• Uplevel links for referencing local symbols in an outer scope (see Section 5.3.4.4)

• New profile feedback information (see Section 5.3.5)
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• New representation for C++ namespaces (see Section 5.3.6.4)

• Unnamed union or structure representation (see Section 5.3.8.3)

5.2. Structures, Fields and Values for Symbol Tables

Unless otherwise specified, all structures described in this section are declared in the header file sym.h,
and all constants are defined in the header file symconst.h.

5.2.1. Symbolic Header (HDRR)

typedef struct {
        coff_ushort magic;
        coff_ushort vstamp;
        coff_int ilineMax;
        coff_int idnMax;
        coff_int ipdMax;
        coff_int isymMax;
        coff_int ioptMax;
        coff_int iauxMax;
        coff_int issMax;
        coff_int issExtMax;
        coff_int ifdMax;
        coff_int crfd;
        coff_int iextMax;
        coff_long cbLine;
        coff_off cbLineOffset;
        coff_off cbDnOffset;
        coff_off cbPdOffset;
        coff_off cbSymOffset;
        coff_off cbOptOffset;
        coff_off cbAuxOffset;
        coff_off cbSsOffset;
        coff_off cbSsExtOffset;
        coff_off cbFdOffset;
        coff_off cbRfdOffset;
        coff_off cbExtOffset;
} HDRR, *pHDRR;

SIZE - 144 bytes, ALIGNMENT - 8 bytes

Symbolic Header Fields

magic

To verify validity of the symbol table, this field must contain the constant magicSym, defined as
0x1992.

vstamp
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Symbol table version stamp. This value consists of a major version number and a minor version
number, as defined in the stamp.h header file:

MAJ_SYM_STAMP 3 High byte

MIN_SYM_STAMP 13 Low byte

See Section 5.1 for a list of symbol table features introduced with version V3.13.

ilineMax

Number of line number entries (if expanded).

idnMax

Obsolete.

ipdMax

Number of procedure descriptors.

isymMax

Number of local symbols.

ioptMax

Byte size of optimization symbol table.

iauxMax

Number of auxiliary symbols.

issMax

Byte size of local string table.

issExtMax

Byte size of external string table.

ifdMax

Number of file descriptors.

crfd

Number of relative file descriptors.

iextMax
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Number of external symbols.

cbLine

Byte size of (packed) line number entries.

cbLineOffset

Byte offset to start of (packed) line numbers.

cbDnOffset

Obsolete.

cbPdOffset

Byte offset to start of procedure descriptors.

cbSymOffset

Byte offset to start of local symbols.

cbOptOffset

Byte offset to start of optimization entries.

cbAuxOffset

Byte offset to start of auxiliary symbols.

cbSsOffset

Byte offset to start of local strings.

cbSsExtOffset

Byte offset to start of external strings.

cbFdOffset

Byte offset to start of file descriptors.

cbRfdOffset

Byte offset to start of relative file descriptors.

cbExtOffset

Byte offset to start of external symbols.

General Notes
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The size and offset fields describing symbol table sections must be set to zero if the section described is not
present.

The cb*Offset fields are byte offsets from the beginning of the object file.

The i*Max fields contain the number of entries for a symbol table section.  Legal index values for a
symbol table section will range from 0 to the value of the associated i*Max field minus one.

For an explanation of packed and expanded line number entries, see the discussion in Section 5.3.2.2.

5.2.2. File Descriptor Entry (FDR)

typedef struct fdr {
        coff_addr adr;
        coff_long cbLineOffset;
        coff_long cbLine;
        coff_long cbSs;
        coff_int rss;
        coff_int issBase;
        coff_int isymBase;
        coff_int csym;
        coff_int ilineBase;
        coff_int cline;
        coff_int ioptBase;
        coff_int copt;
        coff_int ipdFirst;
        coff_int cpd;
        coff_int iauxBase;
        coff_int caux;
        coff_int rfdBase;
        coff_int crfd;
        coff_uint lang : 5;
        coff_uint fMerge : 1;
        coff_uint fReadin : 1;
        coff_uint fBigendian : 1;
        coff_uint glevel : 2;
        coff_uint fTrim : 1;
        coff_uint reserved: 5;
        coff_ushort vstamp;
        coff_uint       reserved2;
} FDR, *pFDR;

SIZE - 96 bytes, ALIGNMENT - 8 bytes

See Section 5.3.2.1 for related information.

File Descriptor Table Entry Fields

adr

Address of first instruction generated from this source file, which should be the same value as found in
the PDR.adr field of the first procedure descriptor for this file.  If no instructions are associated with
this source file, this field should be set to 0. File descriptors that have been merged by source language
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in locally-stripped objects will have this field set to addressNil (-1).

cbLineOffset

Byte offset from start of packed line numbers to start of entries for this file.

cbLine

Byte size of packed line numbers for this file.

cbSs

Byte size of local string table entries for this file.

rss

Byte offset from start of file's local string table entries to source file name; set to issNil (-1) to
indicate the source file name is unknown.

issBase

Start of local strings for this file.

isymBase

Starting index of local symbol entries for this file.

csym

Count of local symbol entries for this file.

ilineBase

Starting index of line number entries (if expanded) for this file.

cline

Count of line number entries (if expanded) for this file.

ioptBase

Byte offset from start of optimization symbol table to optimization symbol entries for this file.

copt

Byte size of optimization symbol entries for this file.

ipdFirst

Starting index of procedure descriptors for this file.

cpd

Count of procedure descriptors for this file.
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iauxBase

Starting index of auxiliary symbol entries for this file.

caux

Count of auxiliary symbol entries for this file.

rfdBase

Starting index of relative file descriptors for this file.

crfd

Count of relative file descriptors for this file.

lang

Source language for this file (see Table 5-1).

fMerge

Informs linker whether this file can be merged.

fReadin

True if file was read in (as opposed to just created).

fBigendian

Unused.

glevel

Symbolic information level with which this file was compiled. This value is not the same as the user's
idea of debugging levels. The value mapping from the user level (-g compiler switch value) to the
symbol table value is:

Debug switch -g0 -g1 -g2 -g3

glevel contents 2 1 0 3

fTrim

Unused.

vstamp

Symbol table version stamp (HDRR.vstamp) value from the original object module (.o file) that is
recorded by the linker.  The linker may combine objects that were compiled at different times and
potentially contain different versions of the symbol table.  In post-link objects, this value may or may
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not match the version stamp in the symbolic header.  For pre-link objects, the values in this field and
the symbolic header stamp should be the same.

reserved, reserved2

Must be zero.

General Notes

The i*Base fields provide the starting indices of this file's subtables within the symbol table sections.  If
the associated count fields are set to 0, the base fields will also be set to zero.

For an explanation of packed and expanded line number entries, see the discussion in Section 5.3.2.2.
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Table 5-1 Source Language (lang) Constants

Name Value Comment

langC 0

langPascal 1

langFortran 2

langAssembler 3

langMachine 4

langNil 5

langAda 6

langPl1 7

langCobol 8

langStdc 9

langMIPSCxx 10 Unused.

langDECCxx 11

langCxx 12

langFortran90
13 Not used by all compilers -

langFortran might be used
instead for both f77 and f90

langBliss 14

langMax 31 Number of language codes
available

5.2.3. Procedure Descriptor Entry (PDR)

struct pdr {
        coff_addr adr;
        coff_long cbLineOffset;
        coff_int isym;
        coff_int iline;
        coff_uint regmask;
        coff_int regoffset;
        coff_int iopt;
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        coff_uint fregmask;
        coff_int fregoffset;
        coff_int frameoffset;
        coff_int lnLow;
        coff_int lnHigh;
        coff_uint gp_prologue : 8;
        coff_uint gp_used : 1;
        coff_uint reg_frame : 1;
        coff_uint prof : 1;
        coff_uint reserved : 13;
        coff_uint localoff : 8;
        coff_ushort framereg;
        coff_ushort pcreg;
} PDR, *pPDR;

SIZE - 64 bytes, ALIGNMENT - 8 bytes

See Section 5.3.4 for related information.

Procedure Descriptor Table Entry Fields

adr

The start address of this procedure.  Set to addressNil (-1) for procedures with no text.  This
field may not be updated by the linker in symbol table versions prior to V3.13.  To determine the
procedure start address in pre-V3.13 symbol tables, use the algorithm described in Section 5.3.4.2.

cbLineOffset

Byte offset to the start of this procedure's line numbers from the start of the file descriptor entry
(FDR.cbLineOffset).

isym

Start of local symbols for this procedure.  This symbol is the symbol for the procedure (symbol type
stProc).  The name of the procedure can be obtained from the iss field of the symbol table entry.

If the object is stripped of local symbol information, this field contains an external symbol table index
for the procedure symbol's entry.

If this procedure has no symbols associated with it, this field should be set to isymNil (-1).  This
situation occurs for a static procedure in an object stripped of local symbol information.

iline

Start of line number entries (if expanded) for this procedure.  Set to ilineNil (-1) to indicate that
this procedure does not have line numbers.

regmask

Saved general register mask.

regoffset
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Offset from the virtual frame pointer to the general register save area in the stack frame.

iopt

Start of procedure's optimization symbol entries.  Set to ioptNil (-1) to indicate that this procedure
does not have optimization symbol entries.

fregmask

Saved floating-point register mask.

fregoffset

Offset from the virtual frame pointer to the floating-point register save area in the stack frame.

frameoffset

Size of the fixed part of the stack frame. The actual frame size can exceed this value.  A routine can
extend its own frame size for frame sizes larger than 2 GB or for dynamic stack allocation requests.

lnLow

Lowest source line number within this file for the procedure.  This is typically the line number of the
first instruction in the procedure, but not always.  Code optimizations can rearrange or remove
instructions making the first instruction map to a different line number.

lnHigh

Highest source line number within this file for the procedure. This field contains a value of -1 for
alternate entry points, which is how an alternate entry point is identified.

gp_prologue

Byte size of gp prologue.

gp_used

Flag set if the procedure uses gp.

reg_frame

True if the procedure is a light-weight or null-weight procedure.  See the General Notes section
following these definitions for more details on procedure weights.

prof

True if the procedure has been compiled with –pg for gprof  profiling.

reserved

Must be zero.

localoff

Bias value for accessing local symbols on the stack at run time.
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framereg

Frame pointer register number.

pcreg

PC (Program Counter) register number.

General Notes:

For more information on call frames, see Section 5.3.4.1.

If the value of gp_prologue is zero and gp_used is 1, a gp prologue is present but was scheduled into
the procedure prologue.

For an explanation of packed and expanded line number entries, see the discussion in Section 5.3.2.2.

A procedure may be heavy-, light-, or null-weight.   The weight of a procedure can be determined from its
descriptor by using the following guidelines:

Weight Indications

Heavy reg_frame is 0 and  bit 26 of the register mask (regmask) is on

Light reg_frame is 1 and regoffset is ra_save

Null reg_frame is 1 and regoffset is 26

See the Calling Standard for Alpha Systems for details on the calling conventions for different weight
procedures. Note that a calling routine does not need to know the weight of the routine being called.

5.2.4. Line Number Entry (LINER)

Line numbers are represented using two formats: packed and expanded. The packed format is a byte stream
that can be interpreted as described in Section 5.3.2.2 to build an expanded table that maps instructions to
source line numbers. The LINER field is used to refer to a single entry in the expanded table. It is declared
as:

typedef int LINER, *pLINER;

A second, newer form of line number information is located in the optimization symbols section.  See
Section 5.2.10 and Section 5.3.2.2.
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5.2.5. Local Symbol Entry (SYMR)

typedef struct {
        coff_long value;
        coff_int iss;
        coff_uint st : 6;
        coff_uint sc  : 5;
        coff_uint reserved : 1;
        coff_uint index : 20;
} SYMR, *pSYMR;

SIZE - 16 bytes, ALIGNMENT - 8 bytes

See Section 5.2.11, Section 5.3.4, and Section 5.3.8 for related information.

Local Symbol Table Entry Fields

value

A field that can contain an address, size, offset, or index. Its interpretation is determined by the symbol
type and storage class combination, as explained in Section 5.2.11.

iss

Byte offset from the issBase field of a file descriptor table entry to the name of the symbol.  If the
symbol does not have a name, this field is set to issNil (-1).  Generally, all user-defined symbols
have names.  A symbol without a name is one that has been created by the compilation system for its
own use.

st

Symbol type (see Table 5-2).

sc

Storage class (see Table 5-3).

reserved

Must be zero.

index

An index into either the local symbol table or auxiliary symbol table, depending on the symbol type
and class. The index is used as an offset from the isymBase field in the file descriptor entry for an
entry in the local symbol table or an offset from the iauxBase field for an entry in the auxiliary
symbol table.

The index field may have a value of indexNil, which is defined as (long)0xfffff. This value is
used to indicate that the index is not a valid reference.
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The next two tables contain all defined values for the st and sc constants, along with short descriptions.
However, these fields must be considered as pairs that have a limited number of possible pairings as
explained in Section 5.2.11.

Table 5-2 Symbol Type (st) Constants

Constant Value Description

stNil 0 Dummy entry

stGlobal 1 Global variable

stStatic 2 Static variable

stParam 3 Procedure argument

stLocal 4 Local variable

stLabel 5 Label

stProc 6 Global procedure

stBlock 7 Start of block

stEnd 8 End of block, file, or procedure

stMember 9 Member of class, structure, union, or enumeration

stTypedef 10 User-defined type definition

stFile 11 Source file name

stStaticProc 14 Static procedure

stConstant 15 Constant data

stBase 17 Base class (for example, C++)

stVirtBase 18 Virtual base class (for example, C++)

stTag 19 Data structure tag value (for example, C++ class or struct)

stInter 20 Interlude (for example, C++)

stModule 22
Fortran90 module definition;
not yet implemented

stNamespace 22 Namespace definition (for example, C++)
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stModview 23
Modifiers for current view of given module;
not yet implemented

stUsing 23 Namespace use (for example, C++ "using").

stAlias 24
Defines an alias for another symbols.  Currently, only used
for namespace aliases.

Table 5-3 Storage Class (sc) Constants

Constant Value Description

scNil 0 Dummy entry

scText 1 Symbol allocated in the .text section

scData 2 Symbol allocated in the .data section

scBss 3 Symbol allocated in the .bss section

scRegister 4 Symbol allocated in a register

scAbs 5 Symbol value is absolute

scUndefined 6 Symbol referenced but not defined in the current module

scUnallocated 7 Storage not allocated for this symbol

scTlsUndefined 9 Undefined TLS symbol

scInfo 11 Symbol contains debugger information

scSData 13 Symbol allocated in the .sdata section

scSBss 14 Symbol allocated in the .sbss section

scRData 15 Symbol allocated in the .rdata section

scVar 16 Parameter passed by reference (for example, Fortran or Pascal)

scCommon 17 Common symbol

scSCommon 18 Small common symbol

scVarRegister 19 Parameter passed by reference in a register

scVariant 20 Variant record (for example, Pascal or Ada)
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scFileDesc 20 File descriptor (for example, COBOL)

scSUndefined 21 Small undefined symbol

scInit 22 Symbol allocated in the .init section

scReportDesc 23 Report descriptor (for example, COBOL)

scXData 24 Symbol allocated in the .xdata section

scPData 25 Symbol allocated in the .pdata section

scFini 26 Symbol allocated in the .fini section

scRConst 27 Symbol allocated in the .rconst section

scTlsCommon 29 TLS unallocated data

scTlsData 30 Symbol allocated in the .tlsdata section

scTlsBss 31 Symbol allocated in the .tlsbss section

scMax 32 Maximum number of storage classes

5.2.6. External Symbol Entry (EXTR)

typedef struct {
        SYMR          asym;
        coff_uint     jmptbl:1;
        coff_uint     cobol_main:1;
        coff_uint     weakext:1;
        coff_uint     reserved:29;
        coff_int      ifd;
} EXTR, *pEXTR;

SIZE - 24 bytes, ALIGNMENT - 8 bytes

External Symbol Table Entry Fields

asym

External symbol table entry.  This structure has the same format as a local symbol entry.  The field
interpretations differ somewhat:

value

Contains the symbol address for most defined symbols.  See Section 5.2.11 for details.

iss
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Byte offset in external string table to symbol name.  Set to issNil (-1) if there is no name for
this symbol.

st

Symbol type. See Table 5-2 for possible values.

sc

Storage class. See Table 5-3 for possible values.

reserved

Must be zero.

index

Can contain an index into the auxiliary symbol table for a type description or an index into the
local symbol table to pointing to a related symbol.

jmptbl

Unused.

cobol_main

Flag set to indicate that the symbol is a COBOL main procedure.

weakext

Flag set to identify the symbol as a weak external. See Section 6.3.4.2 for more details on weak
symbols.

reserved

Must be zero.

ifd

Index of the file descriptor where the symbol is defined.  Set to ifdNil (-1) for undefined symbols
and for some compiler system symbols.

5.2.7. Relative File Descriptor Entry (RFDT)

The relative file descriptor table provides a post-link mapping of file descriptor indices. The purpose of this
table is to minimize work for the linker, which does not update symbol table references to local symbols.
This information is used to obtain the file offset used to bias local symbol indices. Because this table is also
known as the File Indirect Table, two declarations are included in the sym.h header file, as shown here.

typedef int RFDT, *pRFDT;
typedef int FIT, *pFIT;

SIZE - 4 bytes, ALIGNMENT - 4 bytes
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See Section 5.3.2.1 for related information.

5.2.8. Auxiliary Symbol Table Entry (AUXU)

The auxiliary symbol table entry is a 32-bit union. It is either interpreted as a TIR or RNDXR structure or as
an integer value.  See Section 5.3.7.3 for detailed instructions on reading the auxiliary symbols.

typedef union {
        TIR ti;
        RNDXR rndx;
        coff_int dnLow;
        coff_int dnHigh;
        coff_int isym;
        coff_int iss;
        coff_int width;
        coff_int count;
} AUXU, *pAUXU;

SIZE - 4 bytes, ALIGNMENT - 4 bytes

See Section 5.3.7.3 for related information.

Auxiliary Symbol Table Entry Fields

ti

Type information record (TIR), as defined in Section 5.2.8.1.

rndx

Relative index into local or auxiliary symbols (RNDX), as defined in Section 5.2.8.2.

dnLow

Lower bound of range or array dimension. For large structures, two of these fields can be used together
to form one 64-bit number.

dnHigh

Upper bound of range or array dimension. For large structures, two of these fields can be used together
to form one 64-bit number.

isym

For procedures (stProc or stStaticProc symbols), this field is an index into the local symbols.
It is also used as an index into the relative file descriptors.

iss

Unused.

width



160

Width of a bit field or array stride in bits.  Fortran compilers set the array stride to the array element
size in bits.  Two of these fields can be used together to form one 64-bit number.

count

Count of ranges for variant arm. This field name is only used within the type description of a variant
block (stBlock, scVariant).

General Notes:

The fields dnLow, dnHigh, or width must all use either the 32-bit or 64-bit representation when used
together.  For example, an array dimension cannot be specified with a 32-bit dnLow and a 64-bit dnHigh.

5.2.8.1. Type Information Record (TIR)

typedef struct {
        coff_uint fBitfield : 1;
        coff_uint continued : 1;
        coff_uint bt  : 6;
        coff_uint tq4 : 4;
        coff_uint tq5 : 4;
        coff_uint tq0 : 4;
        coff_uint tq1 : 4;
        coff_uint tq2 : 4;
        coff_uint tq3 : 4;
} TIR, *pTIR;

SIZE - 4 bytes, ALIGNMENT - 4 bytes

Type Information Record Entry Fields

fBitfield

Flag set if bit width is specified.

continued

Flag set to indicate that the type description is continued in another TIR record.  This will happen if the
type is represented with more than six type qualifiers.

bt

Basic type (see Table 5-4 and Section 5.3.7.1).

tq0, tq1, tq2, tq3, tq4, tq5

Type qualifiers (see Table 5-5 and Section 5.3.7.2).  The lower-numbered tq fields must be used first,
and all unneeded fields must be set to tqNil (0).

Table 5-4 Basic Type (bt) Constants

Constant Value Description

btNil 0 Undefined or void
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btAdr32 1 Address

btChar 2 Character

btUChar 3 Unsigned character

btShort 4 Short (16 bits)

btUShort 5 Unsigned short (16 bits)

btInt 6 Integer (32 bits)

btUInt 7 Unsigned integer (32 bits)

btLong32 8 Long (32 bits)

btULong32 9 Unsigned long (32 bits)

btFloat 10 Floating point

btDouble 11 Double-precision floating point

btStruct 12 Structure or record

btUnion 13 Union

btEnum 14 Enumeration

btTypedef 15 Defined by means of a user-defined type definition

btRange 16 Range of values (for example, Pascal subrange)

btSet 17 Sets (for example, Pascal)

btComplex 18 Currently unused

btDComplex 19 Currently unused

btIndirect 20
Indirect definition; following rndx points to an entry in the auxiliary symbol
table that contains a TIR (type information record)

btFixedBin 21 Fixed binary (for example, COBOL)

btDecimal 22 Packed or unpacked decimal (for example, COBOL)

btPicture 25 Picture (for example, COBOL)

btVoid 26 Void
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btPtrMem 27 Currently unused

btScaledBin 27 Scaled binary (for example, COBOL)

btVptr 28 Virtual function table (for example, C++)

btArrayDesc 28 Array descriptor (for example, Fortran, Pascal)

btClass 29 Class (for example, C++)

btLong64 30 Address

btLong 30 Long (64 bits)

btULong64 31 Unsigned long (64 bits)

btULong 31 Unsigned long (64 bits)

btLongLong 32 Long long (64 bits)

btULongLong 33 Unsigned long long (64 bits)

btAdr64 34 Address (64 bits)

btAdr 34 Address (64 bits)

btInt64 35 Integer (64 bits)

btUInt64 36 Unsigned integer (64 bits)

btLDouble 37 Long double floating point (128 bits)

btInt8 38 Integer (64 bits)

btUInt8 39 Unsigned integer (64 bits)

btRange_64 41 64-bit range

btProc 42 Procedure or function

btChecksum 63 Symbol table checksum value stored in auxiliary record

btMax 64 Number of basic type codes
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Table Notes:

1. btInt and btLong32 are synonymous.

2. btUInt and btULong32 are synonymous.

3. btLong, btLong64, btLongLong, btInt64, and btInt8 are synonymous.

4. btULong64, btULongLong, btUInt64, and btUInt8 are synonymous.

Table 5-5 Type Qualifier (tq) Constants

Constant Value Description

tqNil 0 No qualifier (placeholder)

tqPtr 1 Pointer

tqProc 2 Procedure or function (obsolete)

tqArray 3 Array

tqFar 4 32-bit pointer; used with the -xtaso emulation

tqVol 5 Volatile

tqConst 6 Constant

tqRef 7 Reference

tqArray_64 8 Large array

tqHasLen 9 Reserved

tqShar 10 Reserved

tqSharArr_64 11 Reserved

tqMax 16 Number of type qualifier codes

5.2.8.2. Relative Symbol Record (RNDXR)

typedef struct {
        coff_uint rfd : 12;
        coff_uint index : 20;
} RNDXR, *pRNDXR;

SIZE - 4, ALIGNMENT - 4
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Relative Symbol Record Fields

rfd

Index into relative file descriptor table if it exists; otherwise, index into file descriptor table.

This field may have a value of ST_RFDESCAPE, defined as 0xfff in the header file
cmplrs/stsupport.h.  This value is used to indicate that the next auxiliary entry, interpreted as
an isym, contains the index.

index

Symbol index. Used as an offset from either FDR.isymbase or FDR.iauxbase, depending on
context.

5.2.9. String Table

The string table is composed of two parts: the local string table and the external string table.  In the on-disk
symbol table, the external strings follow the local strings.  The local string table is present only for objects
created with full debugging information; it is removed if an object is locally stripped.

The storage format for the string table is a list of null-terminated character strings.  It is correctly
considered as one long character array, not an array of strings.  Fields in the symbolic header and file
headers represent string table sizes and offsets in bytes.

5.2.10. Optimization Symbol Entry (PPODHDR)

typedef struct {
        coff_uint ppode_tag;
        coff_uint ppode_len;
        coff_ulong ppode_val;
} PPODHDR, *pPPODHDR;

SIZE - 16 bytes, ALIGNMENT - 8 bytes

See Section 5.3.3 for related information.

Optimization Symbol Entry Fields

ppode_tag

Identifies the kind of data described by this entry.

ppode_len

Indicates the size in bytes of the data that is found in the raw data area for this entry.  When this field is
zero, the only data is stored in the ppode_val field.

ppode_val

This field is either a pointer to the entry's data or is itself the data.  If ppode_len is nonzero, this
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field is a relative file offset from the beginning of the current Per-Procedure Optimization Descriptor
(PPOD) to the applicable data area.  If ppode_len is zero, this field contains the data for the entry.

Table 5-6 Optimization Tag Values

Name Value Description

PPODE_STAMP
1 Version number of the PPOD stored in ppode_val.

The current PPOD_VERSION value is 1

PPODE_END
2 End of entries for this PPOD

PPODE_EXT_SRC
3 Extended source line information

PPODE_SEM_EVENT
4 Semantic event information. (Reserved for future use.)

PPODE_SPLIT
5 Split lifetime information. (Reserved for future use.)

PPODE_DISCONTIG_SCOPE
6 Discontiguous scope information. (Reserved for future

use.)

PPODE_INLINED_CALL
7 Inlined procedure call information. (Reserved for future

use.)

PPODE_PROFILE_INFO
8 Profile feedback information.

5.2.11. Symbol Type and Class (st/sc) Combinations

Entries in the symbol table are primarily identified by the combination of their symbol type (st) and
storage class (sc) values. Not all combinations are valid. Figure 5-3 indicates which combinations are
currently in use.
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Figure 5-3 st/sc Combination Matrix

Interpretation of storage class column labels:
    Ab. scAbs         RC. scRConst        TC. scTlsCommon
    BV. scBasedVar    RD. scRData         TD. scTlsData
    Bi. scBits        RI. scRegImage      TU. scTlsUndefined
    Bs. scBss         Re. scRegister      Ua. scUnallocated
    Co. scCommon      Rp. scReportDesc    Un. scUndefined
    Da. scData        SB. scSBss          US. scUserStruct
    FD. scFileDesc    SC. scSCommon       Va. scVar
    Fi. scFini        SD. scSData         VR. scVarRegister
    If. scInfo        SU. scSUndefined    Vt. scVariant
    In. scInit        Sy. scSymref        XD. scXData
    Ni. scNil         Te. scText
    PD. scPData       TB. scTlsBss

              sc |ABBBC|DFFII|NPRRR|RRSSS|SSTTT|TTUUU|VVVX
    st           |bViso|aDifn|iDCDI|epBCD|UyeBC|DUanS|aRtD
    -------------+-----+-----+-----+-----+-----+-----+----
    stAlias      |     |   X |     |     |     |     |
    stBase       |     |   X |     |     |     |     |
    stBlock      |    X| X X |     | X   |  X  |     |  X
    stConstant   |X  X |X  X |  X  |  X X|     |     |
    stEnd        |    X| X X |     | X   |  X  |     |  X
    stExpr       |     |     |     |     |     |     |
    stFile       |     |     |     |     |  X  |     |
    stForward    |     |     |     |     |     |     |
    stGlobal     |   XX|X    |  XX |  XXX|X  XX|XX X |
    stInter      |     |   X |     |     |     |     |
    stLabel      |X  X |X X X| XXX |  X X|  XX |X X  |   X
    stLocal      |X  X |X X X| XXX |X X X|  XX |X X  |XX X
    stMember     |     | X X |     | X   |     |     |
    stModule     |     |     |     |     |     |     |
    stModview    |     |     |     |     |     |     |
    stNamespace  |     |   X |     |     |     |     |
    stNil        |     |     |     |     |     |     |
    stNumber     |     |     |     |     |     |     |
    stParam      |X  X |X  X |  XX |X X X|     |  X  |XX
    stProc       |     |   X |X    |     |  X  |   X |
    stRegReloc   |     |     |     |     |     |     |
    stSplit      |     |     |     |     |     |     |
    stStaParam   |     |     |     |     |     |     |
    stStatic     |   XX|X  X |  XX |  X X|   X |X    |
    stStaticProc |     |  X X|     |     |  X  |     |
    stStr        |     |     |     |     |     |     |
    stTag        |     |   X |     |     |     |     |
    stType       |     |     |     |     |     |     |
    stTypedef    |     |   X |     |     |     |     |
    stUsing      |     |   X |     |     |     |     |
    stVirtBase   |     |   X |     |     |     |     |

A symbol's type and class taken together determines interpretation of other fields in the symbol table entry.
The same combination can be used for different purposes in different contexts. As a result, to understand
the symbol entry, it also may be necessary to access type information in the auxiliary table or the source
language information in the file descriptor.
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The contents of the value and index fields for each combination, with a brief explanation of the
symbol's use, are described in the following list of combinations.  For many combinations, greater detail
can be found in Section 5.3.7 and Section 5.3.8 .

stGlobal,sc(S)Data/(S)Bss/RData/Rconst

• The value field is the symbol's address.

• The index field is an auxiliary table index or indexNil (if the auxiliary table is not present).

• This symbol is a defined global variable.

stGlobal,scTlsData/TlsBss

• The value field is the offset from the base of the object's TLS region.

• The index field is an auxiliary table index or indexNil (if the auxiliary table is not present).

• This symbol is a defined global TLS variable.

stGlobal, sc(S)Common/TlsCommon

• The value field is the symbol's size in bytes.

• The index field is an auxiliary table index or indexNil (if the auxiliary table is not present).

• This symbol is a common.

stGlobal, sc(S)Undefined/TlsUndefined

• The value field is zero in linked objects.  In relocatable objects, the value field is ignored. (Some
compilers store the size in bytes of the global variable in the value field.)

• The index field is  an auxiliary table index or indexNil (if the auxiliary table is not present).

• This symbol is an undefined global variable.

stStatic, sc(S)Data/(S)Bss/RData/Rconst

• The value field is the symbol's address.

• The index field is an auxiliary table index.

• This symbol is a defined static variable.

stStatic, scTlsData/TlsBss

• The value field is an offset from the base of the object's TLS region.

• The index field is an auxiliary table index.

• This symbol is a defined static TLS variable.
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stStatic, scCommon

• The value field is zero.

• The index field is an auxiliary table index.

• This symbol is a Fortran common block.

stStatic, scInfo

• The value field is zero.

• The index field is an auxiliary table index.

• This symbol is a C++ static data member.

stParam, scAbs

• The value field is an offset from the virtual frame pointer.

• The index field is an auxiliary table index.

• This symbol is a parameter stored on the stack.

stParam, scRegister

• The value field is the number of the register containing the parameter.

• The index field is an auxiliary table index.

• This symbol is a parameter stored in a register.

stParam, scVar

• The value field is an offset from the virtual frame pointer to the parameter's address.

• The index field is an auxiliary table index.

• This symbol is a parameter stored on the stack.  One level of indirection is required to access the
parameter's value.

stParam, scVarRegister

• The value field is the register number containing the address of the parameter.

• The index field is an auxiliary table index.

• This symbol is a parameter stored on the stack.  One level of indirection is required to access the
parameter's value.

stParam, scInfo

• The value field is zero.
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• The index field is an auxiliary table index.

• This symbol is a parameter of a C++ member function, function pointer definition, or procedure with
no code.

stParam, sc(S)Data/(S)Bss/Rconst/Rdata

• The value field is the address of the parameter.

• The index field is an auxiliary table index.

• This symbol is a static parameter.

stParam, scUnallocated

• The value field is zero.

• The index field is an auxiliary table index.

• This is an unallocated parameter.

stLocal, scAbs

• The value field is an offset from the virtual frame pointer.

• The index field is an auxiliary table index.

• This is a local variable stored on the stack.

stLocal, scRegister

• The value field is the number of the register containing the variable.

• The index field is an auxiliary table index.

• This symbol is a local variable stored in a register.

stLocal, scVar

• The value field is an offset from the virtual frame pointer to the symbol's address.

• The index field is an auxiliary table index.

• This symbol is a local variable stored on the stack.  One level of indirection is required to access its
value.

stLocal, scVarRegister

• The value field is the register number containing the address of this variable.

• The index field is an auxiliary table index.
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• This symbol is a local variable stored on the stack.  One level of indirection is required to access its
value.

stLocal, scUnallocated

• The value field is zero.

• The index field is an auxiliary table index.

• This is an unallocated local variable.

stLocal, scText/Init/Fini/(S)Data/(S)Bss/Rconst/Rdata/TlsData/TlsBss

• The value field is the address of the section indicated by the storage class.

• The index field is indexNil.

• These are special symbols inserted by the compilation system for shared objects.  They are found in the
external symbol table and their names are the section names (for example, .text or .init).

stLabel, scAbs

• The value field is the symbol's value.  This may be either a numeric constant or absolute address.

• The index field is indexNil.

• This symbol is a linker defined absolute symbol.

stLabel, scText/Init/Fini/(S|X|P|R)Data/(S)Bss/Rconst/TlsData/TlsBss

• The value field is the label's value (an address).

• The index field is indexNil.

• This symbol is an allocated label.  It can be associated with any raw data section of the object file.

stLabel, scUnallocated

• The value field is zero.

• The index field is indexNil.

• This symbol is an unallocated label.

stProc, scNil

• The value field is zero.

• The index field is indexNil.

• This is an external symbol.

stProc, scText
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• The value field is the procedure's address.

• This symbol can occur in the external or local symbol table:

• In the local symbol table, the index field is an auxiliary table index.

• In the external symbol table, it is the local symbol index of the corresponding procedure
symbol in the local symbol table, unless the file is stripped of local symbol information.  If the
file is locally stripped, the index field is indexNil.

• This symbol is a defined procedure.

stProc, scUndefined

• The value field is zero.

• The index field is indexNil.

• This symbol is an undefined procedure.

stProc, scInfo

• The value field contains a value of:

• -1 (a procedure with no code)

• -2 (a function prototype or function pointer definition)

• A non-negative index into the virtual function table for this function, for a C++ virtual
member function.

• The index field is an auxiliary table index.

• This symbol represents a procedure without code, a function prototype, or a function pointer. The
value field is used to distinguish among these possibilities.

stBlock, scText

• The value field depends on context:

• If this is the first stBlock,scText symbol following an stProc,scText symbol, the
value is the byte offset from the procedure's address to the address of the first instruction
beyond the end of the procedure's prologue.

• For a text block, it is the byte offset from the procedure's address to the starting instruction
address of the block.

• The index field is the local symbol index of the symbol following the matching stEnd.  If this is the
first stBlock,scText following an stProc,scText for an alternate entry point, the index field
will be set to indexNil because the symbol will not have a matching stEnd symbol.

• This symbol indicates the start of a block scope.
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stBlock, scInfo

• The value field depends on context:

• Size in bytes for a class, structure, or union

• Size of the underlying data type for an enumerated type

• Auxiliary table index for a variant record

• Zero for the block scope of a procedure with no code.

• The index field is the local symbol index of the symbol following the matching stEnd.

• This symbol indicates the start of a structure, union, or enumeration definition (in C; the C++
representation differs).  It describes a variant arm if it is inside an stBlock,scVariant scope.
This symbol is also used to define the block scope of a procedure with no code.

stBlock, scCommon

• The value field is the size of the common block in bytes.

• The index field is the local symbol index of the symbol following the matching stEnd.

• This symbol is a scoping symbol for a Fortran common block. It occurs in the context of the
synthesized file used to define a common block.

stBlock, scVariant

• The value field is the local symbol index of the structure member whose value determines which
variant range is used.

• The index field is a the local symbol index of the symbol following the matching stEnd.

• This symbol occurs in the context of Pascal and Ada variant records.  It indicates the start of the
symbols for one variant.

stBlock, scFileDesc/scReportDesc

• The value field is zero.

• The index field is a the local symbol index of the symbol following the matching stEnd.

• This symbol occurs in COBOL only.  It indicates the start of the file or report descriptor scope.

stEnd, scText

• The value field depends on the type of scope it is ending.  It is:

• The size in bytes of the procedure's text (for a procedure)

• Byte offset from a procedure's address to the start of the epilogue (for the outermost text block
in a procedure)
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• Byte offset from a procedure's address to the first instruction address beyond the end of the
block (for a text block)

• Zero (for a file)

• The index field is the local symbol index of the matching stBlock, stProc, or stFile.

• This symbol ends a file, procedure, or text block scope.

stEnd, scInfo

• The value field is zero.

• The index field is a the local symbol index of the matching stBlock or stNamespace.

• If the matching symbol is an stBlock, this symbol ends a structure, union, enumeration, C++ member
function definition, procedure with no code, or the block scope contained by a procedure with no code.
If the matching symbol is an stNamespace, this symbol ends a namespace definition.

stEnd, scCommon

• The value field is zero.

• The index field is the local symbol index of the matching stBlock.

• This symbol ends a Fortran common definition.

stEnd, scVariant

• The value field is the same as that of the matching stBlock.

• The index field is the local symbol index of the matching stBlock.

• This symbol ends a variant record block.

stEnd, scFileDesc/scReportDesc

• The value field is zero.

• The index field is the local symbol index of the matching stBlock.

• This symbol ends a file or report descriptor block.

stMember, scInfo

• The value field depends on the symbol's data type:

• The ordinal value (for an element of an enumerated type)

• Zero (for a namespace or union member)

• Bit offset from the beginning of the structure (for a C structure or C++ class member)
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• The index field is an auxiliary table index.

• This symbol describes a data structure field or the member of a namespace.  It is found inside a block
defining a data structure (for example, class or struct) or a namespace definition block.

stMember, scFileDesc/scReportDesc

• The value field is zero or one, depending on whether the symbol is local or external, respectively.

• The index field is an auxiliary table index.

• This symbol occurs in COBOL only.  It is found inside a file descriptor or report descriptor block.

stTypedef, scInfo

• The value field depends on the purpose of this symbol:

• Zero (for a user-defined type definition).

• The auxiliary table index of the next auxiliary entry after the start of the class definition (for a
compiler inserted symbol). In effect, the value is the contents of the index field plus one.

• The index field is an auxiliary table index.

• This symbol is a user-chosen name for a data type.  It also appears as a compiler-inserted symbol
following the stTag, scInfo symbol for an empty C++ class or structure.

stFile, scText

• The value field is zero.

• The index field is the local symbol index of the symbol following the matching stEnd.

• This symbol denotes the scoping block for a source file.

stStaticProc, scText

• The value field is the procedure's address.

• The index field is an auxiliary table index.

• This symbol is a defined static procedure.

stStaticProc, scInit/Fini

• The value field is the procedure address.

• The index field is an auxiliary table index.

• These combinations are used for the special symbols __istart and __fstart, which are inserted
by the linker.

stConstant, scInfo
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• The value field is the value of the constant.

• The index field is an auxiliary table index.

• This symbol represents a named value (for example, Fortran PARAMETER).

stConstant, scAbs

• The value field is the value of the constant.

• The index field is an auxiliary table index.

• This symbol represents a named value (for example, Fortan PARAMETER).

stConstant, sc(S)Data/(S)Bss/RData/Rconst

• The value field is the symbol's address.

• The index field is an auxiliary table index.

• This symbol represents allocated constant data.

stBase, scInfo

• The value field is the offset of the base class relative to a derived class.

• The index field is an auxiliary table index.

• This symbol is a C++ base class.

stVirtBase, scInfo

• The value field is an index (starting at 1) of the base class run-time description in the virtual base
class table.  See Section 5.3.8.6.2.

• The index field is an auxiliary table index.

• This symbol is a C++ virtual base class.

stTag, scInfo

• The value field is zero.

• The index field is an auxiliary table index.

• This symbol is a C++ class, structure, or union.  Note that the representation for C structures and
unions is different.

stInter, scInfo

• The value field is zero.
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• The index field is an auxiliary table index.

• This symbol is used in C++ to connect the definition of a member function with its prototype in the
class definition context.

stNamespace, scInfo

• The value field is zero.

• The index field is the local symbol index of the symbol following the matching stEnd.

• This symbol indicates the start of the symbols in a namespace definition.

stUsing, scInfo

• The value field is zero.

• The index field is an auxiliary table index.

• This symbol specifies a C++ namespace (or portion thereof) that is being imported into another scope.

stAlias, scInfo

• The value field is zero.

• The index field is an auxiliary table index.

• This symbol defines an alias for a C++ namespace.

Combinations may be valid in the local symbol table, the external symbol table, or both.  Table 5-7 shows
which combinations are valid in which table, based on the symbol type value and also the storage class
value where necessary.  Only combinations previously specified as valid apply where the storage class
value is shown as a wildcard value with the character '*'.

Table 5-7 Valid Placement for st/sc Combinations

st/sc Combination External Symbol
Table

Local Symbol
Table

stNil, * X X

stGlobal, * X

stStatic, * X

stParam, * X

stLocal, scSCN1 X

stLocal, not scSCN1 X
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stLabel, * X X

stProc, scInfo X

stProc, scText X X

stProc, scUndefined X

stBlock, * X

stEnd, * X

stMember, * X

stTypedef, * X

stFile, * X

stStaticProc,
scText

X

stStaticProc,
scInit/Fini

X

stConstant, * X X

stBase, * X

stVirtBase, * X

stTag, * X

stInter, * X

stNamespace, * X

stUsing, * X

stAlias, * X

Table Notes:

1. scSCN = scData, scSData, scBss, scSBss, scRConst, scRData, scInit,
scFini, scText, scXData, scPData, scTlsData, scTlsBss, scTlsInit
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5.3. Symbol Table Usage

5.3.1. Levels of Symbolic Information

Different levels of symbolic information can be stored with an object file. Compilers often provide options
that allow the user to choose the desired level of symbolic information for their program. This choice may
be influenced by size considerations and debugging needs. A trade-off exists between the benefit of saving
space in the object file and the amount of information available to tools that consume symbolic
information.

It is also possible to change the amount of symbolic information present in a program that has already been
compiled and linked.  Information can be added or deleted.  Two of the most common and useful
operations are locally stripping and fully stripping the symbol tables in executable files.  Tools that modify
linked executables, such as instrumentation tools and code optimizers, may rewrite parts of the symbol
table to reflect changes that they made.

5.3.1.1. Compilation Levels

The representation of symbolic information supported by compilers can be broken down into four levels:

1. Minimal– Only information required for linking

2. Limited– Source file and line number information for profiling and limited debugging (stack-tracing)

3. Full– Complete debugging information for non-optimized code

4. Optimized– Debugging information for optimized code

These levels correspond to the system compiler switches -g0 (minimal), -g1 (limited), -g2 (full), and
-g3 (optimized). Table 5-8 shows the symbol table sections that are produced by system compilers at each
compilation level.

Table 5-8 Symbol Table Sections Produced at Various Compilation Levels

Compilation LevelSymbol Table Section

Minimal Limited Full Optimized

Symbolic header Yes Yes Yes Yes

File Descriptors Yes Yes Yes Yes

External Symbols Yes Yes Yes Yes

External Strings Yes Yes Yes Yes

Procedure Descriptors Yes Yes Yes Yes

Line Numbers No Yes Yes Yes

Relative File Descriptors No No Yes Yes
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Optimization Symbols No Partial Yes Yes

Local Symbols No Partial Yes Yes

Local Strings No Partial Yes Yes

Auxiliary Symbols No Partial Yes Yes

The minimal level of symbolic information that may be produced during compilation includes only the
symbol information required for the linker to function properly. This includes external symbol information
that is needed to perform symbol resolution and relocation.

If the limited level of symbolic information is requested, line number entries are generated, but the
auxiliary table will contain only external symbol entries. Again, external symbol and procedure descriptors
are available. In addition, local symbols for procedures (and the corresponding auxiliary symbols,
optimization symbols, and local strings) are present. Limited symbolic information is sufficient to meet the
needs of profiling tools. The information present at this level is a subset of that required for full debugger
support.

If full symbolic information is included, all symbol table section are produced in full. This level enables
full debugging support with complete type descriptions for local and external symbols. Optimization is
disabled.

Optimized symbolic information is designed to balance the aims of performance and debugging
capabilities. This level supplies the same information as the full debugging option, but it also allows all
compiler optimizations. As a result, some of the correlation is lost between the source code and the
executable program.

On Tru64 UNIX systems, users can choose to compile their programs with any one of the four levels of
symbolic information. The options -g0, -g1, and -g2 specify increasing levels of symbolic information.
The system compiler's default is to produce the minimal level (-g0). Currently, debugging of optimized
code (-g3) is not fully supported. See cc(1) for more details.

5.3.1.2. Locally Stripped Images

Objects can be produced with only global symbolic information stored in the symbol table. Selection of the
-x option causes the linker to create a locally-stripped object. Reasons for stripping local symbolic
information include reducing file size and limiting the amount of symbolic information available to end
users of an application.

A locally-stripped object is very similar to an object produced with minimal symbolic information (see
Section 5.3.1.1). The difference is the consolidation of file descriptors, which the linker does only for
locally-stripped objects.

In a locally-stripped image, the file descriptors are included solely for the purpose of identifying source file
languages. One file descriptor is present for each source language involved in the compilation. These file
descriptors will have their adr field set to addressNil indicating the file descriptors cannot be used to
identify text addresses.

The procedure descriptor table is present in full but is rearranged to group procedures by source language.
All procedure descriptors for procedures written in a particular source language are thus contiguous, and
they reflect the file descriptor's information.
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External symbols are also present in a locally-stripped image. The file indices (ifd field) of the external
symbols are updated to identify the generic file descriptor for the appropriate source language. The index
fields are set to zero to indicate that no type information is available. External symbols with the storage
class scNil are removed. These are debugging symbols that are not normally produced for minimal
symbol tables.

Limited debugging is possible with locally-stripped objects. Because the procedure descriptors are retained,
stack traces are possible. External symbol information can also be viewed, and language-dependent
handling of symbols (for example, C++ name demangling) is preserved.

A linked executable file can be locally stripped at any time after its creation using the ostrip -x
option.  The output is the same as described above. This operation may also alter the raw data of the
.comment section. See Chapter 7 for details.

5.3.1.3. (Fully) Stripped Images

Executable files may be fully stripped at any time after creation using either the strip command or the
ostrip -s command. Stripping an executable will result in complete removal of the symbol table,
including the symbolic header. The file header fields f_symptr and f_nsyms are set to zero to indicate
that the file has been stripped.

This operation may also alter the raw data of the .comment section. See Chapter 7 for details.

5.3.2. Source Information

The final executable image for a program bears little resemblance to the source code files from which it
was created. One of the principal functions of the symbol table is to track the relationship between the two
so that the debugger is able to describe the resulting program in a way that the programmer can recognize.

5.3.2.1. Source Files

Much of the complication of source information stems from the "include" system. When a compilation
involves several source files, there may be duplication of the header files included in each source file, or of
the source files themselves. To avoid repetition of header file information in the linked object, the linker
merges the input objects' included files wherever possible. Compilers mark file descriptors as mergeable or
unmergeable. The linker then examines the input file descriptors and performs the merge whenever
possible.

The linker considers two file descriptors to be mergeable if all of the following criteria are met:

1) The file descriptor fMerge bit is set in both (marked as mergeable by compiler).

2) Files have the same name.

3) Files are written in the same language.

4) Files contain the same number of local and auxiliary symbols.

5) Checksums match.
The checksums match if either:

i) Neither file's first auxiliary record is a btChecksum.
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ii) Both files' first auxiliary record is a btChecksum and they are identical.

The role of the relative file descriptor (RFD) tables is to track file-relative information after merging. A
relative file descriptor table entry maps the index of each file at compile time to its index after linking.
After linking, local or auxiliary symbols must be accessed through the RFD table to obtain the updated file
descriptor index. This mechanism is necessary because the indices in the local symbol table are not updated
when files are merged.

Figure 5-4 is an example of the use of the relative file descriptor table.

Figure 5-4 Relative File Descriptor Table Example

For a symbol reference composed of a file index and symbol index (offset within file), the relative file
descriptor table is used as follows:

1) To look up given file index in the RFD table to get updated file index.

2) To look up new file index in the (merged) file descriptor table to get base of symbols for that file.

3) To add symbol index to file's base to access the symbol entry.

See Section 5.3.7.3 for the representation of relative indices in the auxiliary symbol table.
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5.3.2.2. Line Number Information

For a debugger to be effective, a connection must be made between high-level-language statements in
source files and the executable machine instructions in object files. Line number entries map executable
instructions to source lines.  This mapping allows a debugger to present to a programmer the line of source
code that corresponds to the code being executed.  The line number information is produced by the
compiler and should be rewritten if an application such as an instrumentation tool or an optimizer modifies
code.

In V3.13 of the Tru64 UNIX symbol table, line number information is emitted in two forms, one found in
the line number table and one in the optimization symbol table.  (Section5.3.3 describes the structure of the
optimization symbol table.)  The line number information found in the optimization symbol table is
referred to as "extended source location information".  This is a new form of line number information
introduced in V3.13 symbol tables.  The new line number information augments the information in the line
number table.  If both forms of line number information are present in an object the extended source line
information will only be present for procedures that cannot be described adequately by entries in the line
number table.

5.3.2.2.1. The Line Number Table

Line number information is generated for each source file that contributes executable code to a program.
Within each source file, line numbers are organized by procedure, in the order of appearance in the file.
The line number symbol table section is produced only when a program is compiled with limited or greater
symbolic information (see Section 5.3.2.2).

Figure 5-5 illustrates of the organization of the line number table.

Figure 5-5 Line Number Table

The order outlined in Figure 5-5 is not guaranteed to match the ordering of file descriptors or procedure
descriptors in those tables. To determine the bounds of the line number table entries for a specific
procedure, fields in the associated file descriptor and procedure descriptors must be used. The starting
offset for a procedure's line table entries is calculated directly from these fields.  The ending offset can only
be determined by finding the starting offset of the next procedure's entries in the line number table.  An
algorithm to identify the starting and ending line table offsets for a procedure follows.
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IPD = index-of-procedure
IFD = index-of-file-containing-procedure

if (FDR[IFD].cbLine == 0 or
    (PDR[IPD].iline == ilineNil ))
    /* No line information for this procedure */

START_FILE_OFFSET = FDR[IFD].cbLineOffset
END_FILE_OFFSET = START_FILE_OFFSET + FDR[IFD].cbLine

START_PROC_OFFSET = START_FILE_OFFSET + PDR[IPD].cbLineOffset

NEXTIPD = -1
for (I = 0; I < FDR[IFD].cpd; I++)
    IPD2 = FDR[IFD].ipdFirst + I
    if (IPD2 != IPD and
        PDR[IPD2].iline != ilineNil and       /* No lines */
        PDR[IPD2].lnHigh != -1 and            /* Alt entry */
        PDR[IPD2].cbLineOffset > PDR[IPD].cbLineOffset)

        if (NEXTIPD == -1 or
            PDR[PID2].cbLineOffset < PDR[NEXTIPD].cbLineOffset)

            NEXTIPD = IPD2

if (NEXTIPD == -1)
    /* IPD is the last procedure with line numbers in the file */
    END_PROC_OFFSET = END_FILE_OFFSET
else
    END_PROC_OFFSET = START_FILE_OFFSET + PDR[NEXTIPD].cbLineOffset

Alternate entrypoints have a starting line number, but they have no specific ending line number.  Procedure
descriptors for a procedure and each of its associated alternate entrypoints share a common end offset in the
line number table.  See Section 5.3.6.7 for more information on alternate entrypoints.

The line number table has two forms. The "packed" form is used in the object file.  The "expanded" form is
a more useful representation to programmers and can be derived algorithmically (or by API) from the
packed form.

The packed line numbers are stored as bytes.  Each packed entry within the single byte value consists of
two parts: count and delta. The count is the number of instructions generated from a source line. The delta
is the number of source lines between the current source line and the previous one that generated
executable instructions.

Figure 5-6 shows how these two values are represented.



184

Figure 5-6 Line Number Byte Format

The four-bit count is interpreted as an unsigned value between 1 and 16 (0 means 1, 1 means 2, and so
forth). A zero value would be wasted when no instructions are generated for a source line and, as a result,
no line number entry will exist for that line.

The four-bit delta is interpreted as a signed value in the range -7 to +7. The reason for this is that code
generators may produce instructions that are not in the same order as the corresponding source lines.
Therefore, the offset to the "next" source line may be a forwards or backward jump.

Either of these quantities may fall outside the permissible range. For a delta outside the range, an extended
format exists (as shown in Figure 5-7).

Figure 5-7 Line Number 3-Byte Extended Format
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For a count outside the range, one or more additional entries follow, with the delta set to zero.

If both fields are out of range, the delta is handled first. An extended-format delta representation is
followed by an entry with the delta bits set to zero and the remainder of the count contained in the count
value.

The packed line number format can be expanded to produce the instruction-to-source-line mapping that is
needed for debugging. An algorithm to accomplish this transformation for a given procedure follows.  The
expanded line number array has a source line number entry for each instruction in the given procedure.
The address of the first entry is the address recorded in the PDR.adr field.  Subsequent entries correspond
to contiguous sequential instruction addresses.

START_PROC_OFFSET = offset-of-procedure's-entries-in-line-table
END_PROC_OFFSET = offset-of-next-procedure's-line-table-entries

PACKED = HDRR.cbLineOffset + START_PROC_OFFSET
CURRENTLINE = PDR.lnLow
EXPANDED = ALLOCATE(number-of-instructions-in-procedure)

for (I = 0;
     I < (END_PROC_OFFSET - START_PROC_OFFSET)/sizeof(*PACKED);
     I++)
    COUNT = (unsigned)(PACKED[0] & 0x0F) + 1
    DELTA =   (signed)(PACKED[0] & 0xF0) >> 4

    if (DELTA == (signed)0x8)     /* Extended delta */
        DELTA = (signed)((PACKED[2] << 8) | PACKED[1])
        PACKED += 2
    else
        PACKED += 1

    if (current-offset-matches-offset-of-alternate-entry)
        CURRENTLINE = PDR.lnLow of alternate entry

    CURRENTLINE += DELTA

    while (COUNT-- > 0)
        *EXPANDED = CURRENTLINE
        EXPANDED++

The following source listing of a file named lines.c provides an example that shows how the compiler
assigns line numbers:

1   #include <stdio.h>
2   main()
3   {
4       char c;
5
6       printf("this program just prints input\n");
7       for (;;) {
8          if ((c =fgetc(stdin)) != EOF) break;
9       /*   this is a greater than 7-line comment
10           * 1
11           * 2
12           * 3
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13           * 4
14           * 5
15           * 6
16           * 7
17           */
18           printf("%c", c);
19      } /* end for */
20  } /* end main */

The compiler generates line numbers only for the lines 2, 6, 8, 18, and 20; the other lines are either blank or
contain only comments.

Table 5-9 shows the packed entries' interpretation for each source line.

Table 5-9 Line Number Example

Source Line LINER contents Interpretation

2 03 Delta 0, count 4

6 44 Delta 4, count 5

8 29 Delta 2, count 10

18 1 88 00 0a Delta 10, count 9

19 10 Delta 1, count 1

20 14 Delta 1, count 5

Table Note:

1. Extended format (delta is greater than 7 lines).

The compiler generates the following instructions for the example program:

  [lines.c:   2] 0x0:     ldah    gp, 1(t12)
  [lines.c:   2] 0x4:     lda     gp, -32592(gp)
  [lines.c:   2] 0x8:     lda     sp, -16(sp)
  [lines.c:   2] 0xc:     stq     ra, 0(sp)
  [lines.c:   6] 0x10:    ldq     a0, -32720(gp)
  [lines.c:   6] 0x14:    ldq     t12, -32728(gp)
  [lines.c:   6] 0x18:    jsr     ra, (t12), printf
  [lines.c:   6] 0x1c:    ldah    gp, 1(ra)
  [lines.c:   6] 0x20:    lda     gp, -32620(gp)
  [lines.c:   8] 0x24:    ldq     a0, -32736(gp)
  [lines.c:   8] 0x28:    ldq     t12, -32744(gp)
  [lines.c:   8] 0x2c:    jsr     ra, (t12), fgetc
  [lines.c:   8] 0x30:    ldah    gp, 1(ra)
  [lines.c:   8] 0x34:    lda     gp, -32640(gp)
  [lines.c:   8] 0x38:    and     v0, 0xff, t0
  [lines.c:   8] 0x3c:    stq     v0, 8(sp)
  [lines.c:   8] 0x40:    xor     t0, 0xff, t0
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  [lines.c:   8] 0x44:    bne     t0, 0x6c
  [lines.c:  18] 0x48:    ldq     t2, 8(sp)
  [lines.c:  18] 0x4c:    sll     t2, 0x38, t2
  [lines.c:  18] 0x50:    sra     t2, 0x38, a1
  [lines.c:  18] 0x54:    ldq     a0, -32752(gp)
  [lines.c:  18] 0x58:    ldq     t12, -32728(gp)
  [lines.c:  18] 0x5c:    jsr     ra, (t12), printf
  [lines.c:  18] 0x60:    ldah    gp, 1(ra)
  [lines.c:  18] 0x64:    lda     gp, -32688(gp)
  [lines.c:  19] 0x68:    br      zero, 0x24
  [lines.c:  20] 0x6c:    bis     zero, zero, v0
  [lines.c:  20] 0x70:    ldq     ra, 0(sp)
  [lines.c:  20] 0x74:    lda     sp, 16(sp)
  [lines.c:  20] 0x78:    ret     zero, (ra), 1
  [lines.c:  20] 0x7c:    call_pal        halt

After applying the given algorithm, the following instruction-to-source mapping (formatted instruction
number. source line number) is obtained:

           0.    2         1.    2         2.    2
           3.    2         4.    6         5.    6
           6.    6         7.    6         8.    6
           9.    8        10.    8        11.    8
          12.    8        13.    8        14.    8
          15.    8        16.    8        17.    8
          18.   18        19.   18        20.   18
          21.   18        22.   18        23.   18
          24.   18        25.   18        26.   19
          27.   20        28.   20        29.   20
          30.   20        31.   20

Header files included in an object have no associated line numbers recorded in the symbol table. Line
number information for included files containing source code is not supported.

5.3.2.2.2. Extended Source Location Information (ESLI)

The line number table does not correctly describe optimized code or programs with untraditional source
files, resulting in images that are difficult to debug.  Extended Source Location Information (ESLI) is
intended to provide more information to enable debugging of optimized programs, including PC and line
number changes, file transitions, and line and column ranges.  ESLI is essentially a superset of the older
line number table.

ESLI is stored in the optimization symbols section. This information is accessible on a per-procedure basis
from the procedure descriptors. See Section 5.3.3 for more detail on accessing information in the
optimization symbols section.

ESLI is a byte stream that can be interpreted in two modes: data mode or command mode.  Currently, two
formats are defined for data mode.  These are designated as "Data Mode 1" and "Data Mode 2". Additional
data modes may be defined as needed.
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Figure 5-8 ESLI Data Mode Bytes

Data Mode 1 is the initial mode for a procedure's ESLI.  Data Mode 1 is identical to the packed line number
format with the exception of the interpretation of the delta PC escape value '1000' (which indicates a
switch to command mode).

In Data Mode 2, each entry consists of two bytes.  The first byte is identical to the encoding and
interpretation of Data Mode 1.  The second byte is an absolute column number (from 0 to 255), where
column number 0 indicates that column information is missing or not meaningful for this entry.  The escape
from Data Mode 2 to command mode consists of a delta PC escape value set to '1000' and column
number set to 0.

In command mode, each byte is either a command or a command parameter.  For a command byte, the low-
order six bits are a command code, and the two high bits are used as flags, as shown in Figure 5-9.  The
"mark" flag, if set, announces that a new state has been established.  Several commands may be required to
fully describe a new state.  The "resume" flag, if set, indicates the end of command mode.  The next byte
following a command with "resume" set will be a data mode byte. The same data mode that was in effect
prior to the escape to command mode will be resumed. See Table 5-10 for a complete list of commands.

Figure 5-9 ESLI Command Byte
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Command parameters are stored in LEB (Little Endian Byte) 128 format.  See Section 1.4.6 for a
description of this data representation. PC deltas are always expressed as machine instruction offsets and
must be scaled by the size of a machine instruction before adding to the current PC.  No other deltas need
to be scaled.

Table 5-10 shows how to interpret the bytes in command mode.  These definitions can be found in the
system header file linenum.h.

Table 5-10 ESLI Commands

Name Value Number of
Parameters

Type of
Parameters

ADD_PC 1 1 SLEB

ADD_LINE 2 1 SLEB

SET_COL 3 1 LEB

SET_FILE 4 1 LEB

SET_DATA_MODE 5 1 LEB

ADD_LINE_PC 6 2 SLEB, SLEB

ADD_LINE_PC_COL 7 3 SLEB, SLEB,
LEB

SET_LINE 8 1 LEB

SET_LINE_COL 9 2 LEB, LEB

ADD_PC

Parameter is a signed value to add to the current PC value.

ADD_LINE

Parameter is a signed value to add to the current line number.

SET_COL

Parameter is an unsigned value that represents a new column number.  The column number is used to
associate the PC with a particular location within a source line.  Column number parameters use a
zero-based representation that must be adjusted by adding 1.

SET_FILE

Parameter is an unsigned value used to switch file context.  This command is typically followed by a
set_line command.

SET_DATA_MODE
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Parameter is an unsigned value used to set current data mode.  The only parameter values that are
currently accepted are 1 and 2. Additional data modes may be defined in future releases.

ADD_LINE_PC

Both parameters are signed values.  The first is added to the PC and the second is added to the line
number.

ADD_LINE_PC_COL

The first two parameters are signed values and the third is an unsigned value.  The first two are added
to the PC and line number respectively.  The third is used to set the column number.

SET_LINE

Parameter is an unsigned value that sets the current line number.

SET_LINE_COL

Both parameters are unsigned values.  The first represents the line number and the second represents
the column number.

A tool reading the ESLI must maintain the current PC value, file number, line number, and column.  Taken
together, these four values represent the current "state".  Consumers must also keep track of the mode in
effect to interpret the data properly.  The following example shows the instructions for consuming ESLI for
one procedure.

MODE = data mode 1
FILE = current file
LINE = PDR.lnLow
COLUMN = 0
PC = PDR.adr
STATE_TABLE++ = (FILE,LINE,COLUMN,PC)
ESLI = GET_ESLI(PDR.iopt)
for ppode_len bytes of ESLI do
    if (MODE == data mode 1 or MODE == data mode 2)
        if (ESLI.delta == escape)
            PUSH_MODE(MODE)
            MODE = command mode
        else
            PC += 4 * ESLI.delta
            LINE += COUNT + 1
            if (MODE == data mode 1)
                STATE_TABLE++ = (FILE,LINE,COLUMN,PC)
        ESLI++
    if (MODE == data mode 2)
        COLUMN = ESLI++
        STATE_TABLE++ = (FILE,LINE,COLUMN,PC)
    if (MODE == command mode)
        read all parameters
        update FILE, LINE, COLUMN and PC as required
        if (mark flag set)
            STATE_TABLE++ = (FILE,LINE,COLUMN,PC)
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        if (resume flag set)
            MODE = POP_MODE()
        ESLI += number-of-bytes-read

Data encoded in ESLI can be represented in tabular format.  The PC value and file, line and column
numbers can be stored as a state table.  The following example shows how to build this state table.

In this example ESLI will record line numbers for a routine that includes text from a header file.

Source listing for line1.c:

1   /* ESLI example using included source lines */
2
3   main() {
4      char *msg;
5
6      msg = (char *)0;
7
8   #include "line2.h"
9
10     printf("%s", msg);
11  }

Source listing for line2.h

1   msg = (char *)malloc(20);
2   /*
3    *
4    *
5    *
6    *
7    *
8    *
9    *
10   */
11  strcpy(msg, "Hello\n");

The compiler generates the following instructions for the example program:

      main:
[line1.c:   3] 0x1200011d0:     ldah    gp, 8192(t12)
[line1.c:   3] 0x1200011d4:     lda     gp, 28336(gp)
[line1.c:   3] 0x1200011d8:     lda     sp, -16(sp)
[line1.c:   3] 0x1200011dc:     stq     ra, 0(sp)
[line1.c:   3] 0x1200011e0:     stq     s0, 8(sp)
[line1.c:   6] 0x1200011e4:     bis     zero, zero, s0
[line2.h:   1] 0x1200011e8:     bis     zero, 0x14, a0
[line2.h:   1] 0x1200011ec:     ldq     t12, -32560(gp)
[line2.h:   1] 0x1200011f0:     jsr     ra, (t12)
[line2.h:   1] 0x1200011f4:     ldah    gp, 8192(ra)
[line2.h:   1] 0x1200011f8:     lda     gp, 28300(gp)
[line2.h:   1] 0x1200011fc:     bis     zero, v0, s0
[line2.h:  11] 0x120001200:     bis     zero, s0, a0
[line2.h:  11] 0x120001204:     lda     a1, -32768(gp)
[line2.h:  11] 0x120001208:     ldq     t12, -32600(gp)
[line2.h:  11] 0x12000120c:     jsr     ra, (t12)
[line2.h:  11] 0x120001210:     ldah    gp, 8192(ra)
[line2.h:  11] 0x120001214:     lda     gp, 28272(gp)
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[line1.c:  10] 0x120001218:     ldq_u   zero, 0(sp)
[line1.c:  10] 0x12000121c:     lda     a0, -32760(gp)
[line1.c:  10] 0x120001220:     bis     zero, s0, a1
[line1.c:  10] 0x120001224:     ldq     t12, -32552(gp)
[line1.c:  10] 0x120001228:     jsr     ra, (t12)
[line1.c:  10] 0x12000122c:     ldah    gp, 8192(gp)
[line1.c:  10] 0x120001230:     lda     gp, 28244(gp)
[line1.c:  11] 0x120001234:     bis     zero, zero, v0
[line1.c:  11] 0x120001238:     ldq     ra, 0(sp)
[line1.c:  11] 0x12000123c:     ldq     s0, 8(sp)
[line1.c:  11] 0x120001240:     lda     sp, 16(sp)
[line1.c:  11] 0x120001244:     ret     zero, (ra)

The ESLI and its interpretation for the generated code is shown in the following table.

Table 5-11 ESLI Example

ESLI bytes (hex) Mode Command
  (M)ark  (R)esume

State
  (F)ile   (L)ine  (C)olumn

Code M R PC (hex) F L C

Initial State Data1 1200011d0 0 3 0

04 Data1 1200011e4 0 3 0

30 Data1 1200011e8 0 6 0

80 Data1 Escape

04 01 Cmd set_file(1) 1

48 01 Cmd set_line(1) X 1

05 Data1 120001200 1 1 0

80 Data1 Escape

86 0a 06 Cmd add_line_pc(10,6) X 120001218 1 11 0

04 00 Cmd set_file(0) 0

48 0a Cmd set_line(10) X 10

06 Data1 120001234 0 10 0

16 Data1 120001250 0 11 0

The handling of alternate entry points differs from the handling of main entry points. Procedure descriptors
for alternate entry points are identified by a PDR.lnHigh value of -1. If the PC for an instruction maps to
an alternate entry point, the following steps should be taken:
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• Find procedure descriptor for the corresponding main entry.  This is accomplished by searching back
in the procedure descriptors until a PDR is found that is not an alternate entry (PDR.lnHigh is not
-1).

• Access the ESLI for the procedure.

• Read the ESLI until the PC value matches the PDR.adr field of the alternate entry's procedure
descriptor.

5.3.3. Optimization Symbols

The optimization symbols section gives individual producers and consumers the ability to communicate
information about any aspect of the object file, in any form they choose.  New information can be
generated at any time with minimal coordination between all producers and consumers.  In V3.13 of the
symbol table, the optimization section may include extended source location information (see Section
5.3.2.2).

The optimization section is organized on a per-procedure basis.  Each procedure descriptor has a pointer to
the optimization symbols in the field PDR.iopt.  If no optimization symbols are associated with the
procedure, the field contains ioptNil.  Otherwise, it contains the index of the first optimization symbol
entry for this procedure.  Consumers should access the optimization symbols through the procedure
descriptors.  The optimization section is not present in a locally-stripped object.

This section consists of a sequence of zero or more Per-Procedure Optimization Descriptions (PPODs), as
shown in Figure 5-10.  Each PPOD's internal structure consists of two parts:

1) A leading sequence of structured entries using a Tag-Length-Value model to describe subsequent raw
data.  The structure of the PPOD entry can be found in Section 5.2.10.

2) The raw data area.



194

Figure 5-10 Optimization Symbols Section

This section has the following alignment requirements:

• Octaword (16-byte) alignment of the beginning of the section.

• Octaword (16-byte) alignment of the beginning of the raw data area.

• Octaword (16-byte) alignment of each PPOD.

Object file producers must produce either an empty optimization symbols section or a valid one.  An empty
one has the symbolic header fields cbOptOffset and ioptMax set to zero.  If an optimization section is
present, but a particular file does not contribute to it, the file descriptor field copt is set to zero. In this
case, all procedure descriptors belonging to the file must have their iopt fields set to ioptNil.

Tools that both read and write object files must consume a valid optimization symbols section (if present in
the input file) and produce an equivalent and valid section in its output file. If a tool does not know how to
process the section contents, the section must be omitted from the output file. If a tool does know how to
process portions of the optimization symbols, those portions may be modified and the rest should be
removed. As usual, the linker is a special case. It concatenates input optimization symbols sections into one
output section without reading or modifying any of the entries.
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The format and flexible nature of this section are similar by design to the .comment section.  The
structures are the same size and contain the same fields (with different names), and the rules of navigation
are the same. The primary difference is that the optimization section is broken down by procedure;
whereas, the comment section must be treated as a whole.

5.3.4. Run-Time Information

The symbol table contains information that debuggers must interpret to find symbols at run time.  This
section describes the information that the static symbol table structures provides. Algorithms for
determining run-time symbol addresses are included.

5.3.4.1. Stack Frames

A stack frame is a run-time memory structure that is created whenever a procedure is called.  The Calling
Standard for Alpha Systems specifies the stack frame format and related code requirements. This section
explains how to interpret procedure descriptor fields related to the stack frame.

Two types of stack frames are supported: fixed-size frames and variable-size frames.  The variable frame
format is used for procedures that dynamically allocate memory and for those with very large frames.
Figure 5-11 shows a fixed-size frame and Figure 5-12 shows a variable-sized frame.

From the procedure descriptor, you can determine which type of stack frame the procedure has.  The field
PDR.framereg stores the frame pointer register number. If this field has a value of 30 ($sp), the stack
frame is a fixed-size frame. If it has a value of 15 ($fp), the stack frame is a variable-size frame.

Figure 5-11 Fixed-Size Stack Frame
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Figure 5-12 Variable-Size Stack Frame

For both types of stack frames, the value of PDR.frameoffset is the size of the fixed part of the stack
frame.  In the case of a fixed-size frame, it is the entire frame size. For a variable-sized frame, the entire
frame size cannot be determined from the symbol table. The code may dynamically increase and decrease
the size of the frame multiple times during procedure execution.

The virtual frame pointer represents the contents of the frame pointer register at procedure entry, prior to
prologue execution.  The (real) frame pointer is the contents of the frame pointer register after prologue
execution.  The difference between the virtual and real frame pointer values is the fixed frame size, which
is subtracted from the $sp contents during the procedure prologue.  Note that stack offsets recorded in the
symbol table are relative to the virtual frame pointer, not the real value used at run time.

The contents of the frame pointer register at are used at run time as the base address for accessing data,
such as parameters and local variables, on the stack. See Section 5.3.4.3 for details.

5.3.4.2. Procedure Addresses

The PDR.adr is reliably updated by the linker starting with version V3.13 of the symbol table.  To
determine the procedure start address for a given PDR in prior versions of the symbol table, the following
algorithm is recommended:

if (HDRR.vstamp >= 0x30D || PDR.isym == isymNil)
    return(PDR.adr)
else
    foreach FDR in HDRR
        foreach PDR in FDR
            if PDR matches
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                if (FDR.csym == 0)  /* Use external symbol */
                    return (EXTR[PDR.isym].asym.value)
                else                /* Use local symbol */
                    return (SYMR[FDR.isymbase + PDR.isym].value)

If local symbol information is present for the given PDR, the isym field identifies the local symbol table
entry that contains the start address of the procedure.  If no local symbol information is present, the isym
field identifies the external symbol table entry containing the start address of the procedure.  If no symbol
information is present for the PDR, the isym field is set to isymNil and the adr field will contain a
reliable start address.

5.3.4.3. Local Symbol Addresses

Local variables and parameters may be stored in registers or on the stack.  Those stored in registers
(identified by a storage class of scRegister) do not have addresses.  For local variables and parameters
with addresses, this section explains how to calculate their run-time locations from the symbol table
information.

To calculate the run-time address for a local variable (stLocal) based on its symbol table value:

Frame pointer - PDR.localoff + SYMR.value

To calculate the run-time address for a parameter (stParam) based on its symbol table value:

Frame pointer - argument_home_area_size + SYMR.value

The argument home area is a portion of the stack frame designated for parameter storage. See Figure 5-11
for an illustration.  For historical reasons, the size of this area is always 48 bytes.

The calculations above must be performed at run time when the actual frame pointer value is known. Note
that the value becomes valid only after the procedure prologue has executed.

To calculate the locations based on static information, convert the symbol's value to an offset from the real
frame pointer:

Local:

PDR.frameoffset - PDR.localoff + SYMR.value

Parameter:

PDR.frameoffset - 48 + SYMR.value

The resulting offsets are always positive values because the frame pointer contains the address of the
lowest memory in the fixed part of the stack frame at run time.

5.3.4.4. Uplevel Links

An uplevel link is the real frame pointer of an ancestor of a nested routine.  The routine nesting may be a
feature of the language (such as Pascal), or the nesting may occur in optimized code which has been
decomposed for parallel execution into smaller routines.  Uplevel links provide debuggers a method of
finding all local symbols associated with the ancestor routine.
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When a procedure is passed a static link, that static link will be represented within the scope of the
procedure definition as a local automatic symbol with a special name beginning with
"__StaticLink.".  The lifetime of this symbol begins after the procedure prologue has been executed.

The static link symbol will occur between the procedure's parameter definitions and the first stBlock
symbol.

The full name of the symbol will be "__StaticLink." followed by a positive decimal integer with no
leading zeros.  This integer value identifies the number of levels up the ancestor tree the static link points
to.

For example, if the name is "__StaticLink.3" it will contain the static link of the procedure in which
it is defined, and that procedure's static link points to a stack frame that is three levels up in the procedure's
ancestor tree, the great-grandfather of the procedure.

Figure 5-13 Representation of Uplevel Reference
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Debuggers of Tru64 UNIX object files need to use the uplevel link information to determine which
symbols are visible at a location in the program and to compute the addresses of local symbols in ancestor
routines.  When the debugger needs the current value or address of a name that might be defined as an
uplevel reference, two separate actions may be required: finding the procedure that defines the currently
visible instance of that name, and finding the address of the currently visible instance of that name.  If only
type information is required, finding the procedure that defines the name may be sufficient.

Finding the defining procedure is accomplished by repeatedly looking up the name in the local symbol
table of a chain of procedures that extends from the current procedure through its chain of ancestors until
either the name is found in a procedure or the end of the chain of ancestors is reached without finding the
name.  If this search terminates without finding the name, the debugger should conclude that the name is
not visible by uplevel reference at the current location in the program.

When searching for the desired procedure, the debugger should count how many levels in the ancestor
chain were traversed before finding the name.  If zero levels were traversed, the name is defined within the
current procedure and is not an uplevel reference.  The number of levels traversed is assumed to be in the
variable LevelsToGo in the algorithm below.

Finding the address for the name involves locating static link values and dereferencing them with
appropriate offsets.  Basically, while the number of levels to be traversed is greater than zero, find the static
link symbol for the current level and obtain its value.  Finally, add the desired symbol's offset from the real
frame pointer to the final static link value.

The recommended algorithm for finding the address is as follows:

LevelsToGo = <from name lookup above>
NewProc = CurrentProcedure
NewFrame = FramePointerValue(CurrentProcedure)
Failed = false
while (LevelsToGo > 0 && !Failed)
    StaticLink = FindStaticLinkSym(NewProc)
    if (StaticLink == NULL)
        Failed = true
    else
        NewFrame = *(NewFrame + StaticLink->symbol.offset)
        Levels = StaticLinkLevels(StaticLink)
        LevelsToGo = LevelsToGo - Levels
        for (; Levels > 0; Levels--)
            NewProc = NewProc->proc.parent

if Failed is true after executing this algorithm, required information about static links is missing in the
symbol table, and an error has occurred.  If LevelsToGo ends up less than zero, the optimizer's static link
optimization has eliminated a static link level that would be needed to compute the address of the name.  It
is recommended that debuggers inform the user that optimization prevents the debugger from computing
the address of the name.

If Failed is false and LevelsToGo is equal to zero, the address for the currently visible instance of the
name is NewFrame plus the offset of the name with respect to the real frame pointer for NewProc.

The function StaticLinkLevels returns the integer at the end of the name for the indicated static link
symbol.
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5.3.4.5. Finding Thread Local Storage (TLS) Symbols

This section explains how to interpret symbolic information for TLS symbols (identified by a storage class
of scTlsdata or scTlsbss). See Section 3.3.9 or the Programmer's Guide for general information on
TLS.

A TLS symbol's value contains its offset from the start of the TLS region for that object. This offset can be
used at process execution time to determine the address of the TLS symbol for a particular thread.

A debugger can calculate TLS symbol addresses by looking up the address of the TLS region using run-
time structures and adding the offset of the TLS symbol to that address. The following formula can be used
to calculate TLS symbol addresses.

TLS sym address = *(TEB.TSD + __tlskey) + SYMR.value

A detailed description of this formula follows:

1) Get the address of the Thread Environment Block (TEB).

2) Get the address of the Thread Specific Data (TSD) array from the TEB structure.

3) Get the offset of the TLS pointer in the TSD array.

This offset is normally stored in a .lita or .got entry. This value should be accessed using the
symbol __tlskey . In spite of the fact that __tlskey is a label symbol, no ampersand is used in
this context because the value that the label points to is being retrieved. The address of __tlskey
will need to be adjusted by the address mapping displacement in the same manner that the debugger
adjusts addresses of text and data symbols.

For non-shared objects, the .lita entry contains the constant offset (2048).  This offset identifies the
first and only TSD slot (256) that will be allocated for the TLS pointer.

For shared objects, the .got entry labeled by __tlskey is initially 0, indicating that the TSD slot
has not been allocated yet. After the the object's initialization routines have run, a TSD key will be
allocated and the .got entry will contain its offset.

4) Get the TLS pointer value. The TLS pointer is a 64-bit address set to the start of the TLS Region.

5) Calculate the address of the TLS symbol by adding the offset of the TLS symbol to the TLS pointer
value.

5.3.5. Profile Feedback Data

Profile feedback data is stored in entries in the optimization symbols table with tag type
PPODE_PROFILE_INFO.  The data contained in this section is intended for Compaq internal use only. It
contains execution profiling feedback used by compilers and the om utility.

Profile feedback data contains relative file descriptor and local symbol table indexes.  If an object tool
removes, adds, or rearranges relative file descriptors or local symbol table entries it must also remove all
optimization symbol table entries including the profile feedback data.



201

5.3.6. Scopes

From a user-program's point of view, an identifer's scope determines its visibility in different parts of the
program. Programming languages provide facilities for declaring and defining names of procedures,
variables and other program components inside various scoping levels.  This section briefly discusses the
concept of scope and then explains how it is represented in the symbol table. References are made to
structures in the auxiliary symbol table; see Section 5.3.7.3 for details.

Generally speaking, the four main scoping levels in a program are block scope, procedure scope, file scope,
and program scope. Most programming languages have constructs to implement at least these scoping
levels. Figure 5-14 shows the hierarchy of these scopes.

Figure 5-14 Basic Scopes

Names with block scope can only be referenced inside the declaring block. Blocks are delimited by begin
and end markers, the syntax of which varies among languages.

Names with procedure scope are only recognized inside their enclosing subroutines. For instance, the
names of formal parameters and local variables declared inside a procedure are accessible only to that
procedure's executable statements.

Names with file scope can be referenced by any instruction within the file where they are declared. A file
can be composed of procedures and data external to any procedure. Both external data names and
procedure names can have file scope or program scope.  Note that in a compilation involving only a single
file or in a compilation for a programming language with no separate-compilation facilities, file scope and
program scope are equivalent.

Names with program scope are visible everywhere in the program, even when the executable program is
built from many source and header files. The linker must resolve these names or pass them to the dynamic
loader to resolve. See Section 5.3.10 for more information about symbol resolution.
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In the symbol table, procedure scope, file scope and program scope correspond to local, static, and global
symbols, respectively. Block scope names are also local symbols. Local and static symbols appear in the
local symbol table, and global symbols are in the external symbol table.

5.3.6.1. Procedure Scope

Although procedure symbols can only be global or static (with symbol types stProc and
stStaticProc, respectively), procedure entries appear in the local symbol table to identify the
containing scope of their local data. The set of symbols appearing in the local symbol table to describe a
procedure scope and their associated auxiliary entries is shown in Figure 5-15. Global procedures also have
entries in the external symbol table. As illustrated, the indices of these external entries point to the scoping
entries in the local symbol table.

In this chapter, all diagrams of symbol table representations use arrows to show that one entry
contains an index to another entry.  For external and local symbol table entries, the index used is
contained in the index field.  For auxiliary symbols, the isym or RNDXR field is the index used.
Any exceptions to this general rule are noted in the diagrams.

Figure 5-15 Procedure Representation

A special instance of a procedure definition occurs for a procedure with no text.  This type of procedure
occurs only in the local symbol table and is very similar to the representation of other procedures.  It is
generally used for procedures that have been optimized away that still need to be represented for debugging
or profiling information.
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Figure 5-16 Procedure with No Text

A procedure with no code can contain only nested procedures that also have no code associated with them.
If a procedure with no code does not contain any nested procedures, the stBlock/stEnd symbol pair
can be omitted from the representation.

The stProc symbol included in this representation is distinguished from similar stProc symbols by its
value field that is set to addressNil (-1).

5.3.6.2. File Scope

As in the case of procedures, file name entries appear in the local symbol table to define the file's scope.
This representation is shown in Figure 5-17. Note that file symbols appear in the local symbol table only.

Figure 5-17 File Representation
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5.3.6.3. Block Scope

In general, the local symbol table denotes scoping levels with stBlock and stEnd pairs, as shown in
Figure 5-18.

All symbols contained between these two entries belong to the scope they describe.  Nested blocks are
possible, and stEnd symbols match the most recent occurences of stBlock (or other opening symbol
entries such as stProc or stTag).

Figure 5-18 Block Representation

Block scopes occur in many languages. In C, they take the form of lexical blocks. In C++, declarations can
occur anywhere in the code. In Pascal and Ada, nested procedures are possible, with local variables at any
or all levels.

5.3.6.4. Namespaces (C++)

A C++ namespace is a mechanism that allows the partitioning of the program global name space.  This
partitioning is intended to reduce name clashing and provide greater program managability to C++
developers.
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Figure 5-19 C++ Namespace Representation

A namespace definition may exist only at the global scope or within another namespace.  The namespace
representation in Figure 5-19 shows a single contribution to a namespace.  This representation may be
replicated many times in the symbol table for a single namespace.  A namespace definition may be
continued within the same file or over multiple source files.

A single namespace contribution that spans multiple source files is represented as if it were contained
entirely within the source file in which it began.
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Namespaces may be aliased, allowing a single namespace to be refered to by multiple names.  Namespace
components may also be referenced without their namespace qualification if they are included within a
scope by a using directive or using declaration.  The representations of namespace aliases, using directives,
and using declarations are shown in Figure 5-19.  Namespace definitions, namespace component
declarations, namespace aliases, using directives, and using declarations occur only in the local symbol
table.  Namespace component definitions may occur in the local or external symbol table.

5.3.6.4.1. Namespace Components

The components of a namespace are represented in two parts: declarations and definitions.  Namespace
components that do not require definition must be declared in the namespace definition.  Namespace
components that are referenced by a using declaration must be declared in the namespace definition.  All
other namespace component declarations may be omitted from the namespace definition.

Namespace component names are mangled only as needed.  Function and data definitions have mangled
name definitions in the local or external symbol table.  These entries are mangled for type-safe linkage and
as a method of matching components with the namespaces to which they belong.  Names of component
declarations within a namespace definition may or may not be mangled.  They are not required to include
the namespace name in their mangled form.

Empty namespace contributions can be omitted, but at least one instance of a namespace definition must
occur somewhere in the local symbol table.  This definition is required because name mangling rules do not
distinguish namespace component definitions from class member definitions.

5.3.6.4.2. Namespace Aliases

Namespace aliases can occur in namespace, file, procedure or block scope in the local symbol table.  The
index value for the stAlias entry is an auxiliary table index.  The auxiliary entry is a RNDXR record
containing the local symbol table index of the stNamespace symbol in the first instance of a namespace
definition within a compilation unit.  For an alias of an alias, the RNDXR record can also contain the index
of another stAlias symbol in the local symbol table.  Section 9.2.5 provides an example of a namespace
alias.

The stAlias symbol type may be used in future versions of the symbol table format as a general purpose
symbol alias representation.  The semantic interpretation of the stAlias symbol depends on the type of
the symbol it aliases.

5.3.6.4.3. Unnamed Namespace

An unnamed namespace can be declared at the global scope or within another namespace.  An unnamed
namespace is unique within a compilation unit.  Multiple contributions to a unique unnamed namespace are
not allowed.  Unnamed namespace contributions are included in the non-mergeable portion of a C++
header file.

Unnamed namespace components are subject to the same rules as named namespaces for declarations and
definitions.

The stNamespace symbol for an unnamed namespace has no name, and its iss field is set to issNil.
A compiler generated name is used to identify the unnamed namespace in the mangled names of unnamed
namespace components.  A convention for this special name is currently being investigated and will be
identified in the next release of this document.  The unnamed namespace example in  Section 9.2.4 will use
the name __unnamed until the actual naming convention has been determined.
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5.3.6.4.4. Usage of Namespaces

A C++ using directive or a using declaration is represented by a symbol of type stUsing.  It may occur in
any scope in the local symbol table.  The index value for the stUsing entry is an auxiliary table index.  If
the stUsing entry represents a using declaration for a single namespace component, the auxiliary entry is
a RNDXR record containing the local symbol table index of a namespace component declaration.  If the
stUsing entry represents a using directive, its RNDXR auxiliary contains the local symbol table index of
the stNamespace symbol in the first definition of that namespace in the compilation unit.

A using directive for a namespace alias is represented with a RNDXR auxiliary that directly references the
aliased namespace.  This representation contains no record of the alias referenced by the using directive.

Names are not required for stUsing entries, but they can be set to match the namespace or namespace
component to which they refer.

Namespace components that are referenced by an stUsing symbol must be declared in the namespace
definition.

Section 9.2.3 provides an example of namespace definitions and uses.

5.3.6.5. Exception Handling Blocks (C++)

In C++, a special scoping mechanism is introduced to expand user-defined exception-handling capabilities.
Exception handlers are defined to "catch" exceptions that are "thrown" by other functions. The symbol
table must contain sufficient information to recognize the scope of a handler. The compiler generates
special symbols to identify where exception handlers are valid.
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Figure 5-20 C++ Exception Handler Representation

5.3.6.6. Common Blocks (Fortran)

Fortran common blocks constitute another scoping level. Fortran uses common blocks as a way of
specifying data that is global or shared between program units. A common block is global storage that can
be named, allotted, accessed, and used by various subroutines. The block can be named or unnamed;
unnamed blocks are known as "blank commons". Internal to the symbol table, blank commons are named
"_BLNK_".

Figure 5-21 shows the symbolic representation of Fortran common blocks.
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Figure 5-21 Fortran Common Block Representation

Because a Fortran common is represented as a synthesized file, it also has an entry in the file descriptor
table. Furthermore, a global symbol with the same name is also present in the external symbol table.

An example of a Fortran common block can be found in Section 9.3.1.

5.3.6.7. Alternate Entry Points

Fortran also has a facility for creating alternate entry points in procedures. An alternate entry point is
represented using an stProc, scText symbol. In the procedure descriptor table, an alternate entry
point is identified by a lnHigh field with a value of -1. Procedure descriptors for alternate entry points
follow the procedure descriptor for the primary entry point. In the local symbol table, an alternate entry
point has an entry inside the scope of the procedure's main entry.

The representation of a procedure with an alternate entry point is shown in Figure 5-22
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Figure 5-22 Alternate Entry Point Representation

An example of Fortran alternate entries can be found in Section 9.3.2.

5.3.7. Data Types in the Symbol Table

A data element's type dictates its size and interpretation in a programming environment. One of the symbol
table's most important tasks is to represent data types in a compact and complete manner.

Type information is stored in the local and auxiliary symbol tables.  This section provides guidelines for
understanding the type information plus specific examples for depicting a range of types.

5.3.7.1. Basic Types

All programming languages have a set of simple types that are built into the language and from which other
data types can be derived. Examples of simple types are integer, character, and floating point. Languages
also provide constructs for creating user-defined types based on the simple types. For example, a C++ class
can be built using any simple type or previously defined user-defined type and the language facility for
declaring classes.
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Similarly, a basic type in the symbol table is a building block from which each language constructs its type
information. Basic type (bt) values directly represent many of the simple types for supported languages;
for instance, the value btChar indicates a character. Other bt values represent language constructs for
building aggregate types; a value of btStruct may be used, for example, to represent a C structure or
Pascal record.

The symbol table uses approximately forty basic type values. The interpretation of some of these values is
language dependent. See Table 5-4 for a list of all values.

5.3.7.2. Type Qualifiers

Type qualifiers can be applied to basic types to create other data types. Examples are "pointer to" and
"array of". Generally the number and order of type qualifiers is unrestricted.

The type qualifier "function returning" (tqProc) is not used in V3.13 of the symbol table.  However, it is
used in prior versions for variables declared as function pointers.  This older representation uses a TIR
record to store the function type in the bt value followed by as many type qualifiers as necessary. A major
limitation of this representation is the inability to represent parameter types.

The symbol table currently uses eight type qualifiers.  See Table 5-5 for a list of all possible values.

5.3.7.3. Interpreting Type Descriptions in the Auxiliary Table

This section explains in detail the encoding of type descriptions in the symbol table. To fully describe the
type of a symbol, the auxiliary symbol table must be created and referenced. Compilation with full
symbolic information (-g option on system compilers) results in the creation of this table.

To correctly decode the type information, proceed sequentially, beginning with the symbol table entry.
Several fields may be required from other symbol table structures:

• symbol type (st)

• storage class (sc)

• index (SYMR.index)

• value (SYMR.value)

• source language (FDR.lang)

The first step is to determine whether the symbol contains an index of an auxiliary table description.

Table 5-12 Symbol Table Entries with Associated Auxiliary Table Type Descriptions

Symbol Type Storage Class Conditions SYMR Field Containing
AUXU Index

stGlobal Any None index

stStatic Any None index

stParam Any None index
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stLocal Any Local symbol table index

stProc Any Local symbol table only index

stBlock scInfo Inside an scVariant block
only

value

stMember scInfo None index

stTypedef scInfo None index

stStaticProc Any Local symbol table only index

stConstant Any None index

stBase scInfo None index

stVirtBase scInfo None index

stTag scInfo None index

stInter scInfo None index

stNamespace scInfo None index

stUsing scInfo None index

stAlias scInfo None index

If the index does represent a record in the auxiliary symbol table, the interpretation of the first auxiliary
entry (AUXU) depends on the type of the symbol:

• If the symbol's type is stProc or stStaticProc and the symbol is a local symbol, the indexed
AUXU is an isym and the second AUXU is a TIR. External procedure symbols do not have descriptions
in the auxiliary table.

• If the symbol's type is stInter, stAlias, or stUsing, the indexed AUXU is an RNDXR and the
type description does not contain a TIR.

• If the symbol is an stBlock symbol inside an scVariant block, the symbol entry's value field is
an index into the auxiliary table. This special case is the only one where the value is used as an
auxiliary symbol pointer. In all other cases, it is the index field that potentially indexes the auxiliary
table type description.

• Otherwise, the indexed AUXU is a TIR.

The next task is to examine the contents of the TIR. The TIR contains constants representing the basic
type of the symbol and up to six type qualifiers, labeled tq0-tq5. If a type has more than one qualifier,
they are ordered from lowest to highest. Lower qualifiers are applied to the basic type before higher
qualifiers. All unused tq fields are set to tqNil, and no tqNil fields are present before or between
other type qualifiers.
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In addition to the basic type and type qualifiers, the TIR contains two flags: an fBitfield flag to mark
whether the size of the type is explicitly recorded, and a continued flag to indicate that the type
description is continued in another TIR. If fBitfield is set, the TIR is immediately followed by a
width entry. If more than six type qualifiers are required for the current definition, the description is
continued, and the continued flag is set. If exactly six type qualifiers are needed, all six fields are used
and the continued flag is cleared.

To illustrate, consider the type "array of pointers to integers". The basic type is "integer" and has two
qualifiers, "array of" and "pointer to". Each element of the array is a "pointer to integer". Therefore, the
qualifier "pointer to" must be applied first to the basic type "integer". In this example, the qualifier "pointer
to" is lower than the qualifier "array of". The contents of the TIR are as follows:

        bt: btInt
        tq0: tqPtr
        tq1: tqArray
        tq2: tqNil
        tq3: tqNil
        tq4: tqNil
        tq5: tqNil
        continued: 0
        fBitfield: 0

The contents of the TIR dictate how to interpret any subsequent records. The records appear in a prescribed
order:

• If the fBitfield flag is set, a width record follows the TIR.

• If the basic type is btPicture, the next four records contain integer values: the string table index of
the picture string, the length, precision and scale.

• If the basic type is btScaledBin, the next three records contain integer values: a basic type, the
precision and scale.

• If the basic type field is btStruct, btUnion, btEnum, btClass, btIndirect,
btSet, btTypedef, btRange, btRange_64, btDecimal, btFixedBin, or
btProc, the next record is an RNDXR.

• If the rfd field of the RNDXR contains the value ST_RFDESCAPE, the next record is an isym.

• If the basic type is btRange, the next two records are dnLow and dnHigh.

• If the basic type is btRange_64, the next two records are dnLow records and the two after that are
dnHigh records.

• If the basic type is btDecimal or btFixedBin, the next two records contain integer values: the
precision and scale.

• For each array type qualifier in the TIR, the following symbols occur:

• An RNDXR, again possibly followed by an isym

• Either one or two dnLow  records (depending on whether the array is tqArray or
tqArray_64)
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• Either one or two dnHigh records (depending on whether the array is tqArray or
tqArray_64)

• Either one or two width records (depending on whether the array is tqArray or
tqArray_64)

• If the continued flag is set, the next record is another TIR

For a type description containing more than one TIR, the fields of all TIR records are interpreted in the
same way. When a TIR is reached with the flag cleared and any records associated with that TIR have
been decoded, the type description is complete.

As an example, consider an array of structures with the fBitfield flag set.  A total of seven auxiliary
records can be used to describe the type:

1) The TIR with a basic type of btStruct and with tq0 set to tqArray

2) A width record.  The size of the basic type

3) A RNDXR record.  A pointer to the structure definition in the local symbol table

4) A RNDXR record.  A pointer to the array index type description elsewhere in the auxiliary table

5) A dnlow record.  The lower bound of the array's range

6) A dnhigh record.  The upper bound of the array's range

7) A width record.  The distance in bits between each element in the array

If the continued flag of the TIR is cleared, the width record corresponding to the array qualifier is the
final AUXU for this type description.

For another view of this process, see Figure 5-23. Each box represents one auxiliary entry belonging to the
symbol's type description. Using the flowchart, an ordered list of entries can be assembled.
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Figure 5-23 Auxiliary Table Interpretation
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Figure 5-24 Auxiliary Table "ti" Interpretation
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Figure 5-25 Auxiliary Table "bt vals" Interpretation
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Figure 5-26 Auxiliary Table "arrays" Interpretation
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Figure 5-27 Auxiliary Table "range" Interpretation
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Figure 5-28 Auxiliary Table "rndx" Interpretation

The final step is to decode the RNDXR records. The basic types that are followed by RNDXR records require
reference to another local or auxiliary symbol to complete the type description. Interpret the RNDXR
records as follows:

• If the basic type is btStruct,btUnion, btEnum, btClass, btProc, or btTypedef, the
index field of the RNDXR points into the local symbol table. The specified local symbol is the start of
the definition of the structure, union, enumeration, class, or user-defined type. For btProc, the
referenced local symbol is the start of the set of symbols defining the procedure's signature.

• If the basic type is btSet, the RNDXR points into the auxiliary symbol table. The specified record is
the start of the description of the type of each element in the set.

• If the basic type is btIndirect, the RNDXR points into the auxiliary symbol table. The specified
auxiliary record is the start of the description of the referenced type.

• If the basic type is btRange, the RNDXR points into the auxiliary symbol table. The specified
auxiliary record is the start of the description of the type being subranged.

• If the basic type is btFixedBin, the rfd field of the RNDXR contains a Boolean value. If rfd is
true, the base is decimal; if rfd is false, the base is binary. The index field represents a type
code.

• If the basic type is btDecimal, the rfd field of the RNDXR contains the value 1 for 4-bit digits
(packed decimal) or 2 for 8-bit digits (zoned decimal). The index field represents a type code.

Additionally, the index of every RNDXR used as a pointer must be mapped through the relative file
descriptor table (see Section 5.3.2.1), if the table exists. The rfd field of the record controls this mapping.
The following algorithm can be used to locate the symbol referenced by the relative index record:

if (RNDXR.rfd == ST_RFDESCAPE)
    RFD = (++AUXU).isym
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else
    RFD = RNDXR.rfd
if (HDRR.crfd) /* RFD table exists */
    IFD = (current FDR's RFD table)[RFD]
else
    IFD = RFD

if (SYMR needed)
    SYMBASE = FDR[IFD].isymBase
    SYMR = SYMBASE[RNDXR.index]
else if (AUXU needed)
    AUXBASE = FDR[IFD].iauxBase
    AUXU = AUXBASE[RNDXR.index]
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5.3.8. Individual Type Representations

This section provides sketches of type representations in the local and auxiliary symbol tables. The
connections between the two tables is depicted for each type. This form of representation is only possible
when full symbolic information is present.

Note that external symbols as well as local symbols reference the auxiliary table, although the examples in
this chapter use local symbols only.

5.3.8.1. Pointer Type

A pointer is a variable containing the address of another variable. A pointer is represented by a tqPtr type
qualifier modifying another type.  A pointer is represented by a single symbol with an entry in the auxiliary
table, as shown in Figure 5-29.

Note that if the pointer referenced a user-defined type, such as a class or structure, the TIR would be
followed by an RNDXR (and possibly an isym).

Figure 5-29 Pointer Representation

The combination of type qualifiers tqFar and tqPtr are used to represent a short (32-bit) pointer.  This
pointer type is used with the XTASO emulation.

5.3.8.2. Array Type

An array is a list of elements that all have the same type. Arrays may be fixed size and allocated at compile
time or dynamically sized and allocated at run time. This section describes the fixed-size array symbol table
representation. For information on Fortran dynamic arrays, see Section 5.3.8.9.  For conformant arrays in
Pascal and Ada, see Section 5.3.8.10.

An array is represented by a tqArray or tqArray_64 type qualifier applied to another type. This
second type describes the type of all elements in the array. In the local or external symbol table, a single
entry represents an array. Figure 5-30 shows the symbol table description for an array.
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Figure 5-30 Array Representation

Note that for an array of elements of a user-defined type, such as a class or structure, another RNDXR (and
possibly an isym) would be inserted between the TIR and the RNDXR describing the subscript type.

If an array has multiple dimensions, the symbols describing the dimension appear in the order of innermost
to outermost. For example, the following declaration produces a TIR with the tqArray qualifier followed
by the RNDXR and range description for 0-1 followed by the entries for the dimension 0-99:

float floattable[100][2]

Some arrays may have dimensions too large to represent in the 32-bit format shown in Figure 5-30.  Such
arrays are represented using a 64-bit format in which two auxiliary entries are used for the dimension
bounds and size.  Figure 5-31 illustrates the 64-bit representation.
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Figure 5-31 64-Bit Array Representation

5.3.8.3. Structure, Union, and Enumerated Types

This section applies to data structures in languages other than C++. For the C++ structure, union, or
enumerated type representation, see Section 5.3.8.6.

Structures, unions, and enumerated types have a common representation. All three are identified using
"tags" and contain zero or more fields. In the symbol table, the tag is the name associated with the starting
stBlock symbol for the structure's set of local symbols. Note that it may be empty because the tag is
optional. Symbols for fields follow. The definition is completed by a block-end symbol matching the block-
start symbol.

Figure 5-32 contains a graphical depiction of this set of symbols.
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Figure 5-32 Structure Representation

The structure members have auxiliary table indices pointing to their type descriptions.

Untagged structures and unions are represented with a NULL tag name.  Unnamed structures can be
embedded in other structures and are represented as a NULL-named member of the outer structure. See
Section 9.1.1 for an example of an unnamed structure.

A structure can contain a field that is a pointer to itself. This field is represented by an stMember symbol
with an auxiliary table entry that references the beginning of the structure's block of local symbols, as
shown in Figure 5-33.
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Figure 5-33 Recursive Structure Representation

When a field within a structure is itself a structure, the compiler may choose to generate the structure
definitions either sequentially or embedded, as shown in Figure 5-34.

Figure 5-34 Nested Structure Representation
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The following declaration might result in the nested structure representation:

struct line {
        struct point {
            float x, y;
        }  p1, p2;
};

5.3.8.4. Typedef Type

Most languages allow programmers to choose alternate names, or aliases, for data types. The alias created
by such a facility (such as C's typedef) is represented as a single local symbol entry that has a pointer to
its type description in the auxiliary table. The auxiliary entry contains a pointer to the definition of the type
name, as shown in Figure 5-35.

Figure 5-35 Typedef Representation

5.3.8.5. Function Pointer Type

Languages such as C and C++, which allow pointers to functions, represent the type of the function pointer
using a special stProc/scInfo block describing the parameters and return value for the function as
shown in Figure 5-36.
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Figure 5-36 Function Pointer Representation

The stProc/scInfo entry has its value set to -2, which distinguishes it from similar entries used to
represent procedures with no text and C++ member functions. The stProc/scInfo and
stEnd/scInfo entries have null names in the function pointer representation. The parameters are
optional and may or may not be named.

This representation for function pointers is new in V3.13. The previous representation used the
combination of type qualifiers tqPtr and tqProc in the TIR of the function pointer variable. Prior to
V3.13, it was not possible to represent the parameter types for a function pointer.

5.3.8.6. Class Type (C++)

A C++ class resembles an extended C structure. One major distinction is that class fields (referred to as
"members") can be functions as well as variables. The set of symbols created for a class is organized as
follows:

• The name of the class

• A block symbol for scoping

• Data members

• Symbols associated with member functions. Each member function is represented by the normal set of
symbols present for a function.

• Corresponding end symbols that denote the completion of the block and class.

Another characteristic of classes is that symbols are defined implicitly. For example, all classes have an
operator= operator-overloading function included in the class definition and a "this" pointer to its
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own type as a parameter to all member functions. These symbols are always included explicitly in the
symbol table description.

Figure 5-37 is a graphical representation of the set of symbols for a class.

Figure 5-37 Class Representation

Class members, including member functions, have auxiliary references that point to their type descriptions.
Note that member functions are represented as prototypes. The set of symbols defining the member
function is elsewhere in the symbol table. To locate the definition of a member function, a name lookup can
be performed using the mangled name of the member function with its class name qualifier.  See Section
5.3.10.3 for information on name mangling.

C++ structures, unions, and enumerated types are represented the same way as classes. The different data
structures are distinguished by basic type value.

The symbol table does not represent class member access attributes.

Examples of base and derived classes can be found in Section 9.2.1.

5.3.8.6.1. Empty Class or Structure (C++)

The representation of empty classes or structures in C++ is shown in Figure 5-38.
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Figure 5-38 Empty Class or Structure (C++)

5.3.8.6.2. Base and Derived Classes (C++)

Hierarchical groups of classes can be designed in C++. A base class serves as a wider classification for its
derived classes, and a derived class has all of the members and methods of the base class, plus additional
members of its own. In the symbol table, the set of symbols denoting a derived class is nearly identical to
that for a non-derived class. The derived class includes an additional stBase or stVirtBase symbol
that identifies its corresponding base class, and it does not need to duplicate the definitions for the base
class members. This representation is shown in Figure 5-39.
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Figure 5-39 Base Class Representation

The representation of virtual base classes for C++ relies on the definition of a special symbol that identifies
the virtual base table.  The name for this symbol is derived from the name of the class to which it belongs.
For example, the virtual base table symbol for class C5 would be named "_btbl_2C5".  This table
contains entries for base class run-time descriptions.

A class can include the special member "_bptr".  This class member is a pointer to the virtual base table
for that class.

The value field for a virtual base class symbol (stVirtBase/scInfo) serves as an index (starting at
1) into the virtual base class table.

5.3.8.7. Template Type (C++)

Templates are a C++-specific language construct allowing the parameterization of types. C++ class
templates are represented in the symbol table for each instantiation, but not for the template itself. The set
of class symbols is unchanged from the set shown in Figure 5-37.

5.3.8.8. Interlude Type (C++)

Interludes are compiler generated functions in C++. They are represented in the local symbol table with
special names starting with the "__INTER__" prefix.  Their representation in the symbol table makes use of
two RNDXR aux entries to identify the related member function and the actual interlude function, both of
which are local symbol table entries.
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Figure 5-40 Interlude Representation

5.3.8.9. Array Descriptor Type (Fortran90)

A Fortran90 array descriptor is a structure that describes an array: its location, dimensions, bounds, sizes,
and other attributes. Array descriptors are described in detail in the Fortran 90 User Manual for Tru64
UNIX. Fortran90 includes several types of arrays for which the dimensions or dimension bounds are
determined at run time: allocatable arrays, assumed shape arrays, and array pointers.

Two symbol table representations can be used for an array descriptor. The default representation describes
the array descriptor itself. The alternate representation describes what is known of the array itself at
compile time.

No matter what symbolic representation is used, symbols of this type point to a data location at which the
array descriptor is allocated. One of the array descriptor fields contains a pointer to the actual array. Other
fields are used to describe the attributes of the array. Fields that describe the number of dimensions and
upper and lower bounds are filled in at run time.

By default, array descriptors are described by a structure tag representation. Most of the array descriptor
fields are represented as structure members. (Excluded fields are not needed by debuggers.) Special tag
names are used to identify array descriptor structure definitions: $f90$f90_array_desc (assumed-
shape array), $f90$f90_ptr_desc (pointer to array) and $f90$f90_alloc_desc (allocatable
array). Figure 5-41 shows the format of this representation.

Some compilers may emit other fields in addition to those shown in Figure 5-41. A consumer's ability to
interpret additional fields depends on its knowledge of the producing compiler.
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Figure 5-41 Array Descriptor Representation (I)

An example of the default Fortran array descriptor representation can be found in Section 9.3.3.

An alternate representation for array descriptors may be found in symbol tables prior to V3.13. The
overloaded basic type value 28 indicates an array descriptor in the TIR, and dimension bounds are set to
[1:1] indicating their true size is unknown.  The alternate representation does not provide any information
describing the contents of the array descriptor itself, so debuggers must assume a static representation for
the descriptor and lookup the fields at their expected offsets.

This representation is substantially more compact in the local symbol table, but it provides no way to
distinguish between the different types of array descriptors.

Figure 5-42 shows the format of the older array descriptor representation.
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Figure 5-42 Array Descriptor Representation (II)

5.3.8.10. Conformant Array Type (Pascal)

Full details are not currently available for Pascal's conformant array representation. A Pascal conformant
array is very similar to Fortran's assumed shape arrays. It is an array parameter with upper and lower
dimension bounds that are determined by the input argument. A conformant array is represented by an
array descriptor. The special names used and the format of the array descriptor differ from those used for
Fortran. The DEC Pascal release notes contain additional information on conformant arrays.

5.3.8.11. Variant Record Type (Pascal and Ada)

A variant record is an extension to the record data type, which is a Pascal or Ada data structure akin to a C
struct and is represented in the same manner in the symbol table. The variant part of the record consists
of sets of one or more fields associated with a range of values. Only one such set is part of the record, and it
is selected based on the value of another record field. Any number of variant parts can be embedded in a
single record.

The local symbol table entries for the variant part of a record are contained within a block with the storage
class (sc value) scVariant. The value field of the stBlock entry contains the index of the local
symbol entry for the member of the record whose value determines which variant arm is used. The variant
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block contains multiple inner blocks, each representing a variant arm. The value field of each of these
block entries is an auxiliary table index. Each auxliary table entry starts with a count, which indicates
how many range entries follow. The range entries describe the values associated with the block.

Figure 5-43 is a graphical representation of a variant record.

Figure 5-43 Variant Record Representation

Prior to V3.13 of the symbol table, variant records were represented differently.  Figure 5-44 depicts the
older representation.
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Figure 5-44 Variant Record Representation (pre-V3.13)

An example of a Pascal variant record can be found in Section 9.4.3.

5.3.8.12. Subrange Type (Pascal and Ada)

A subrange data type defines a subset of the values associated with a particular ordinal type (the "base
type" of the subrange). Ordinal types in Pascal include integers, characters, and enumerated types. The
symbol table representation of a subrange uses the btRange or btRange_64 type followed by an
auxiliary index identifying the base type and entries providing the bounds of the subrange. The 32-bit
representation is shown in Figure 5-45 and the 64-bit representation is shown in Figure 5-46.
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Figure 5-45 Subrange Representation

Figure 5-46 64-bit Range Representation

An example of a Pascal subrange can be found in Section 9.4.2.
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5.3.8.13. Set Type (Pascal)

A set is a data type that groups ordinal elements in an unordered list. The arithmetic and logical operators
are overloaded in Pascal; this enables them to be used with set variables to perform classic set operations
such as union and intersection. A special auxiliary type definition btSet exists to identify this type. The
symbol table representation is depicted in Figure 5-47.

Figure 5-47 Set Representation

The element type for a set is typically a range or an enumeration.  An example of a Pascal set can be found
in Section 9.4.1.
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5.3.9. Special Debug Symbols

A variety of special symbols are used throughout the symbol table to convey call frame information, special
type semantics, or other language specific information.  These names are reserved for use by compilers and
other tools that produce Tru64 UNIX object files.

Name Purpose

__StaticLink.* Uplevel link. See Section 5.3.4.4.

_BLNK__ Fortran unnamed common block.  See Section 5.3.6.6.

MAIN__ Fortran alias for main program unit.  See Section 5.3.10.4.

<ARGNAME>.len Generated parameter for Fortran routines.  It contains the
length of <ARGNAME>, a parameter of character type.

.lb_<ARRAY>.<dim>

.ub_<ARRAY>.<dim> Lower and upper bounds of particular dimensions of arrays–
when the array has an explicit shape, yet some bounds come
from non-constant specification expressions (array arguments
in Pascal and Fortran routines).

$f90$f90_array_desc
$f90$f90_alloc_desc
$f90$f90_ptr_desc

Variants of Fortran-90 described arrays (assumed shape,
ALLOCATABLE, and POINTER, respectively).  See Section
5.3.8.9.

cray pointee Fortran-generated typedef describing the type of a variable
pointed to by a CRAY pointer.

pointer Fortran generated typedef describing the type of a scalar with
the POINTER attribute.

_DECCXX_generated_name_* DECC++ compiler-inserted name for unamed classes and
enumerations.

this Hidden parameter in C++ member functions that is a pointer to
the current instance of the class.  See Section 5.3.8.6.

__vptr Hidden C++ class member containing the virtual function
table.  See example in Section 9.2.2.

__bptr Hidden C++ class member containing the virtual base class
table.  See example in Section 9.2.2.

__vtbl_* Global symbols for C++ virtual function tables.  See example
in Section 9.2.2.

__btbl_* Global symbols for C++ virtual base class tables.  See example
in Section 9.2.2.

__control Hidden argument to C++ constructors controlling descent (in
the face of virtual base classes).
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__t*__evdf Structure used to maintain a list of C++ global deconstructors.

t*__iviw C++ static procedure used for global constructors.

t*__evdw C++ static procedure used for global destructors.

__t*_thunk C++ static procedure used to provide a defaulted argument
value.

__INTER__* C++ interlude.  See example in Section 9.2.2.

__unnamed::* C++ unnamed namespace components.  See example in
Section 9.2.4.

5.3.10. Symbol Resolution

Among the linker's chief tasks is symbol resolution. Because most compilations involve multiple source
files and virtually all programs rely on system libraries, a process is necessary to resolve conflicting uses of
global symbol names. The linker must decide which symbol is referenced by a given name. This section
highlights the major issues involved in that decision.  Related information is contained in Section 6.3.4 and
the Programmer's Guide.

Symbol table entries provide information relevant to performing symbol resolution.  External symbols with
a storage class of sc(S)Undefined, sc(S)Common, or scTlsCommon must be resolved before they
are referenced.  By default, the linker will not mark an object file with unresolved symbols as executable.
However, linker options give programmers a fair measure of control over its symbol resolution behavior.
See ld(1) for more information.

5.3.10.1. Library Search

Symbols referenced, but not defined in the main executable of an application must be matched with
definitions in linked-in libraries. The linker combines objects, archives, and shared libraries while
attempting to resolve all references to undefined symbols. The Programmer's Guide covers related topics in
detail, such as how to specify libraries during compilation and the search order of libraries.

In general, main executable objects and shared libraries are searched before archive libraries. If no
undefined external symbols remain, archive libraries in the library list do not have to be searched, because
archive members are only loaded to resolve external references. Archives are not used to find "better"
common definitions (see Section 5.3.10.2), and no archive definitions preempt symbol definitions from the
main object or shared libraries.

5.3.10.2. Resolution of Symbols with Common Storage Class

Symbols with common storage class are a special category of global symbols that have a size but no
allocated storage. Symbols with common storage class should not be confused with Fortran common
symbols, which are not represented by a single symbol table entry. (See Section 5.3.6.6 for a description of
Fortran common symbols.). Common storage classes are scCommon, scSCommon, and scTlsCommon.

The symbol definition model used by Tru64 UNIX allows an unlimited number of common storage class
symbols with the same name. Ultimately, the "best" of these must be selected (by the linker or the loader)
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during symbol resolution.  The criteria used to select the best symbol definition include the symbol's
allocation status and size.

The symbol table does not provide an "allocated common" storage class. Common storage class symbols
adopt a new storage class when they are allocated. Typically, their new storage class is scBss or scSBss
or scTlsBss. On the other hand, the dynamic symbol table does explicitly distinguish common storage
class symbols that have been allocated. See Section 6.3.4 for more information on dynamic symbol
resolution.

A symbol reference is resolved according to the following precedence rules:

1) Find a symbol definition that does not have a common storage class and is not identified as an
allocated common in the dynamic symbol table.

2) Find the largest allocated common identified in the dynamic symbol table.

3) Find the largest common storage class symbol and allocate it. This step will be skipped when the linker
produces a relocatable object file.

Precedence is given to symbol definitions with storage allocation  to minimize load time common
allocation and redundant storage allocations in shared objects. The loader is capable of allocating space for
common storage class symbols, but this should only be necessary when a program references an allocated
common symbol in a shared library that is later removed from that shared library.

Note that Fortran common block representations use common storage class symbols  Another very frequent
occurrence of a common storage class symbol is a C-language global variable that does not have an
initializer in its declaration.

5.3.10.3. Mangling and Demangling

Another issue related to symbol resolution is the need to "mangle" user-level identifiers.  For example, C++
allows function overloading, prototyping, and the use of templates–all of which can result in the occurrence
of the same names for different entities. The solution employed by the symbol table is to use mangled
names that derive from the symbol's type signature.

Object file consumers, such as debuggers and object dumpers, need to "demangle" the identifiers so they
can be output in a form that is recognizable to the user. For linking and loading, the mangled names are
used for symbol resolution.

The encoding of C++ names is described in the manual Using DEC C++ for Tru64 UNIX Systems.

Other compilers may write symbol names that are modified by prepending or appending special characters
such as dollar sign ($) or underscore (_) or by prepending qualifier strings such as file names or namespace
names.  Uppercasing of names is also common for certain languages such as Fortran.  All of these
transformations fall into the general category of mangled names.  Refer to the release notes for specific
compilers for additional information.

5.3.10.4. Mixed Language Resolution

Compilation of a program involving multiple source languages introduces additional symbol resolution
issues. One important task is resolving the main program entry point because conflicting "main" symbols
may be present in the different files. For C and C++, the symbol "main" is the main program entry point,
but for other languages, "main" will either be an alias for the main program or an interlude. DEC Fortran
and DEC COBOL provide interludes that perform some language specific initializations and then call the
real main program entry point. For DEC FORTRAN the main program is "MAIN__" and for DEC COBOL
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the main program is "__cobol_main". DEC PASCAL provides a "main" symbol that aliases the actual main
program symbol.

The symbols "MAIN__" and "__cobol_main" can both be present in a mixed language program, and either,
neither, or both can be used by the program. Debuggers can set a breakpoint in the user's main program by
applying some precedence for selecting the most appropriate symbol. For a mixed language program, there
is a slight chance that "MAIN__" or "__cobol_main" will be present but never called.

5.3.10.5. TLS Symbols

TLS symbols, like non-TLS symbols, can be undefined or common. Unresolved TLS symbols are
identified by the storage class scTlsUndefined, and TLS commons have the storage class
scTlsCommon.  The symbol resolution process for TLS names is similar, but separate; TLS symbols
cannot be resolved to non-TLS symbols or vice versa.

TLS common symbols are resolved in the same manner as other common storage class symbols (see
Section 5.3.10.2), except that, again, only TLS symbols are candidates for resolution.

Another rule special to TLS is that symbol definitions for TLS common and undefined symbols cannot be
imported from shared libraries.
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5.4. Language-Specific Symbol Table Features

Language-specific characteristics are pervasive in the symbol table, particularly in the local, external, and
auxiliary symbol tables. See Section 5.2 and Section 5.3.7 for information on language-specific values.

The lang field of the file descriptor entry encodes the source language of the file. This field should be
accessed prior to decoding symbolic information, especially type descriptions. This section highlights, by
language, language-specific features represented in the symbol table. Additional information on certain
features is available elsewhere in this chapter.

5.4.1. Fortran77 and Fortran90

In Fortran, it is possible to create multiple entry points in subroutines. A subroutine has one main entry
point and zero or more alternate entry points, indicated by ENTRY statements. See Section 5.3.6.7 for their
representation in the symbol table.

Fortran90 array descriptors include allocatable arrays, assumed-shape arrays, and pointers to arrays. Their
representation in the symbol table is discussed in Section 5.3.8.9.

Modules provide another scoping level in Fortran90 programs.  The symbol table representation for
modules has not yet been implemented.

5.4.2. C++

C++ classes encapsulate functions and data inside a single structure.  Classes are represented in the symbol
table using a btClass basic type and the stBlock/stEnd scoping mechanism. See Section 5.3.8.6.

Templates provide for parameterized types. At present, no special symbol table values are related to
templates. The template itself is not represented; rather, entries that correspond to each instantiation are
generated. Template instantiations are distinguished by mangled names based on their type signatures.

C++ namespaces, like Fortran modules, offer an additional scope for program identifiers.  Again, they are
not yet implemented in the symbol table.

The C++ concepts of private, protected, and public data attributes are not currently represented in the
symbol table. The C++ concept of "friend" classes and functions are also not represented.

5.4.3. Pascal and Ada

Pascal conformant arrays are function parameters with array dimensions that are determined by the
arguments passed to the function at run time. See Section 5.3.8.10.

Variant records are an extension of the record data structure.  Variant records allow different sets of fields
depending on the value of a particular record member. See Section 5.3.8.11.

Nested procedures are supported in these languages. They are represented using standard scoping
mechanisms discussed in Section 5.3.6 and uplevel references described in Section 5.3.4.4.

Sets and subranges are user-defined subsets of ordinal types. Sets are unordered groups of elements, which
can be manipulated with the classic set operations. Subranges are ordered and are used with the usual
operators. See Section 5.3.8.12 and Section 5.3.8.13.
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Ada subtypes of ordinal types are represented in the same manner as Pascal subranges.
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6. Dynamic Loading Information

The dynamic linker/loader (commonly referred to as the loader) is responsible for creating a dynamic
executable's process image and placing it into system memory so that it can execute. The loader's functions
include finding and mapping shared libraries, completing symbol resolution, and finalizing program
addresses.

To accomplish these functions, the loader requires information on external symbols and shared libraries.
The linker prepares this dynamic loading information for shared objects only. The dynamic loader then
uses this information to create and map the process image. The dynamic information consists of the
sections highlighted in Figure 6-1.

Figure 6-1 Dynamic Object File Sections

These sections are mapped with the text segment, except for the .got, which contains the GOT (Global
Offset Table). The GOT is part of the data segment because it must be written into when addresses are
updated.

The function of each dynamic section can be summarized as follows:

• The .dynamic section serves as a header for the dynamic information.

• The .dynsym section contains the dynamic symbol table.

• The .dynstr section contains the names of dynamic symbols and shared library dependencies.

• The .hash section holds a hash table to provide quick access into the dynamic symbol table.
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• The .msym table contains supplemental symbolic information, including pre-computed hash values
and dynamic relocation indices.

• The .liblist section stores dependency information.

• The .conflict section contains a list of multiply-defined symbol names that must be resolved at
load time.

• The .rel.dyn section contains dynamic relocation entries.

• The .got section contains one or more tables of 64-bit run-time addresses.

This chapter covers the dynamic sections and related topics. The actions of the system dynamic loader are
explained in detail. Related material is available in the Programmer's Guide and loader(5).

6.1. New or Changed Dynamic Loading Information Features

Version 3.13 of the object file format introduces a new dynamic tag value for specifying symbol resolution
order.  See DT_SYMBOLIC in Section 6.2.1 for details.

6.2. Structures, Fields, and Values for Dynamic Loading Information

All structures and macros are declared in the header file coff_dyn.h unless otherwise indicated.

6.2.1. Dynamic Header Entry

typedef struct {
        coff_int      d_tag;
        coff_uint     reserved;
        union {
            coff_uint d_val;
            coff_addr d_ptr;
        } d_un;
} Coff_Dyn;

SIZE - 16 bytes, ALIGNMENT - 8 bytes

Dynamic Header Entry Fields

d_tag

Indicates how the d_un field is to be interpreted.

reserved

Must be zero.

d_val

Represents integer values.
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d_ptr

Represents virtual addresses. Virtual addresses stored in this field may not match the memory virtual
addresses during execution. The dynamic loader computes actual addresses based on the virtual
address from the file and the memory base address. Object files do not contain relocation entries to
correct addresses in the dynamic section.

The d_tag requirements for dynamic executable files and shared library files are summarized in Table
6-1.  "Mandatory" indicates that the dynamic linking array must contain an entry of that type; "optional"
indicates that an entry for the tag may exist but is not required.

Table 6-1 Dynamic Array Tags (d_tag)

Name Value d_un Executable Shared Library

DT_NULL 0 ignored mandatory mandatory

DT_NEEDED 1 d_val optional optional

DT_PLTGOT 3 d_ptr optional optional

DT_HASH 4 d_ptr mandatory mandatory

DT_STRTAB 5 d_ptr mandatory mandatory

DT_SYMTAB 6 d_ptr mandatory mandatory

DT_STRSZ 10 d_val optional optional

DT_SYMENT 11 d_val optional optional

DT_INIT 12 d_ptr optional optional

DT_FINI 13 d_ptr optional optional

DT_SONAME 14 d_val ignored mandatory

DT_RPATH 15 d_val optional ignored

DT_SYMBOLIC 16 ignored optional optional

DT_REL 17 d_ptr mandatory mandatory

DT_RELSZ 18 d_val mandatory mandatory

DT_RELENT 19 d_val optional optional

DT_RLD_VERSION 0x70000001 d_val mandatory mandatory

DT_TIME_STAMP 0x70000002 d_val optional optional
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DT_ICHECKSUM 0x70000003 d_val optional optional

DT_IVERSION 0x70000004 d_val optional optional

DT_FLAGS 0x70000005 d_val optional optional

DT_BASE_ADDRESS 0x70000006 d_ptr optional optional

DT_MSYM 0x70000007 d_ptr optional optional

DT_CONFLICT 0x70000008 d_ptr optional optional

DT_LIBLIST 0x70000009 d_ptr optional optional

DT_LOCAL_GOTNO 0x7000000A d_val mandatory mandatory

DT_CONFLICTNO 0x7000000B d_val optional optional

DT_LIBLISTNO 0x70000010 d_val optional optional

DT_SYMTABNO 0x70000011 d_val mandatory mandatory

DT_UNREFEXTNO 0x70000012 d_val optional optional

DT_GOTSYM 0x70000013 d_val mandatory mandatory

DT_HIPAGENO 0x70000014 d_val optional optional

DT_SO_SUFFIX 0x70000017 d_val optional optional

The uses of the various dynamic array tags are as follows:

DT_NULL

Marks the end of the array.

DT_NEEDED

Contains the string table offset of a null-terminated string that is the name of a needed library. The
offset is an index into the table indicated in the DT_STRTAB entry. The dynamic array can contain
multiple entries of this type. The order of these entries is significant.

DT_HASH

Contains the quickstart address of the symbol hash table.

DT_STRTAB

Contains the quickstart address of the string table.

DT_SYMTAB
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Contains the quickstart address of the symbol table with Coff_Sym entries.

DT_STRSZ

Contains the size of the string table (in bytes).

DT_SYMENT

Contains the size of a symbol table entry (in bytes).

DT_INIT

Contains the quickstart address of the initialization function.

DT_FINI

Contains the quickstart address of the termination function.

DT_SONAME

Contains the string table offset of a null-terminated string that gives the name of the shared library file.
The offset is an index into the table indicated in the DT_STRTAB entry.

DT_RPATH

Contains the string table offset of a null-terminated library search path string. The offset is an index
into the table indicated in the DT_STRTAB entry.

DT_SYMBOLIC

The presence of this entry indicates that symbol references should be resolved using a depth-ring
search of the shared object's dependencies. See Section 6.3.4.3 for a details on shared object search
order.

This dynamic entry is for information only. The search order is controlled by the DT_FLAGS setting
that includes the RHF_RING_SEARCH and RHF_DEPTH_FIRST flags when DT_SYMBOLIC is
added to the dynamic section.

DT_REL

Contains the address of the dynamic relocation table. If this entry is present, the dynamic structure
must contain the DT_RELSZ entry.

DT_RELSZ

Contains the size (in bytes) of the dynamic relocation table pointed to by the DT_REL entry.

DT_RELENT

Contains the size (in bytes) of a DT_REL entry.

DT_RLD_VERSION

Contains the version number of the run-time linker interface. The version is:



250

• 1 for executable objects that have a single GOT

• 2 for executable objects that have multiple GOTs

• 3 only for objects built on Tru64 UNIX V2.x

DT_TIME_STAMP

Contains a 32-bit time stamp.

DT_ICHECKSUM

Contains a checksum value computed from the names and other attributes of all symbols exported by
the library.

DT_IVERSION

Contains the string table offset of a series of colon-separated versions. An index value of zero means
no version string was specified.

DT_FLAGS

Contains a set of 1-bit flags. The following flags are defined for DT_FLAGS:

Table 6-2 DT_FLAGS Flags

Flag Value Meaning

RHF_QUICKSTART 0x00000001 Object may be quickstarted by loader

RHF_NOTPOT 0x00000002 Hash size not a power of two

RHF_NO_LIBRARY_REPLACEMENT 0x00000004 Use default system libraries only

RHF_NO_MOVE 0x00000008 Do not relocate

RHF_TLS 0x04000000 Identifies objects that use TLS

RHF_RING_SEARCH 0x10000000
Symbol resolution same as DT_SYMBOLIC.  This flag
is only meaningful when combined with
RHF_DEPTH_FIRST

RHF_DEPTH_FIRST 0x20000000 Depth-first symbol resolution

RHF_USE_31BIT_ADDRESSES 0x40000000 TASO (Truncated Address Support Option) objects

DT_BASE_ADDRESS

Contains the quickstart base address of the object.

DT_CONFLICT

Contains the quickstart address of the .conflict section.
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DT_LIBLIST

Contains the quickstart address of the .liblist section.

DT_LOCAL_GOTNO

Contains the number of local GOT entries. The dynamic array contains one of these entries for each
GOT.

DT_CONFLICTNO

Contains the number of entries in the .conflict section.

DT_LIBLISTNO

Contains the number of entries in the .liblist section.

DT_SYMTABNO

Indicates the number of entries in the .dynsym section.

DT_UNREFEXTNO

Holds the index to the first dynamic symbol table entry that is an external symbol not referenced
within the object.

DT_GOTSYM

Holds the index to the first dynamic symbol table entry that corresponds to an entry in the global offset
table. The dynamic array contains one of these entries for each GOT.

DT_HIPAGENO

Not used by the default system loader.  If present, must contain the value 0.

DT_SO_SUFFIX

Contains a shared library suffix that the loader appends to library names when searching for
dependencies. This tag is used, for example, with Atom tools. Instrumented applications may be
dependent on instrumented shared libraries identified by a tool-specific suffix.

All other tag values are reserved. Entries can appear in any order, except for the DT_NULL entry at the end
of the array and the relative order of the DT_NEEDED entries.

6.2.2. Dynamic Symbol Entry

typedef struct {
        coff_uint       st_name;
        coff_uint       reserved;
        coff_addr       st_value;
        coff_uint       st_size;
        coff_ubyte      st_info;
        coff_ubyte      st_other;
        coff_ushort     st_shndx;
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} Coff_Sym;

SIZE - 24 bytes, ALIGNMENT - 8 bytes

See Section 6.3.3 for related information.

Dynamic Symbol Entry Fields

st_name

Contains the offset of the symbol's name in the dynamic string section.

reserved

Must be zero.

st_value

Contains the quickstart address if the symbol is defined within the object.  Contains 0 for undefined
external symbols, the alignment value for commons, or any arbitrary value for absolute symbols.

st_size

Identifies the size of symbols with common storage allocation; otherwise, contains the value zero. For
STB_DUPLICATE symbols (see Table 6-4).  The size field holds the index of the primary symbol.

st_info

Identifies the symbol's binding and type. The macros COFF_ST_BIND and COFF_ST_TYPE are used
to access the individual values. See Table 6-3 and Table 6-4 for the possible values.

st_other

Currently has a value of zero and no defined meaning.

st_shndx

Identifies the symbol's dynamic storage class. See Table 6-5 for the possible values.
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Table 6-3 Dynamic Symbol Type (st_info) Constants

Name Value Description

STT_NOTYPE 0 Indicates that the symbol has no type or its type is unknown.

STT_OBJECT 1 Indicates that the symbol is a data object.

STT_FUNC 2 Indicates that the symbol is a function.

STT_SECTION 3 Indicates that the symbol is associated with a program section.

STT_FILE 4 Indicates that the symbol is the name of a source file.

Table 6-4 Dynamic Symbol Binding (st_info) Constants

Name Value Description

STB_LOCAL 0 Indicates that the symbol is local to the object (or designated as hidden).

STB_GLOBAL 1 Indicates that the symbol is visible to other objects.

STB_WEAK 2 Indicates that the symbol is a weak global symbol.

STB_DUPLICATE 13
Indicates the symbol is a duplicate. (Used for objects that have multiple
GOTs.)

Table 6-5 Dynamic Section Index (st_shndx) Constants

Name Value Description

SHN_UNDEF 0x0000 Indicates that the symbol is undefined.

SHN_ACOMMON 0xff00 Indicates that the symbol has common storage (allocated).

SHN_TEXT 0xff01 Indicates that the symbol is in a text segment.

SHN_DATA 0xff02 Indicates that the symbol is in a data segment.

SHN_ABS 0xfff1 Indicates that the symbol has an absolute value.

SHN_COMMON 0xfff2 Indicates that the symbol has common storage (unallocated).
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6.2.3. Dynamic Relocation Entry

typedef struct {
        coff_addr r_offset;
        coff_uint r_info;
        coff_uint reserved;
} Coff_Rel;

SIZE - 16 bytes, ALIGNMENT - 8 bytes

See Section 6.3.5 for related information.

Dynamic Relocation Entry Fields

r_offset

Indicates the quickstart address within the object that contains the value requiring relocation.

r_info

Indicates the relocation type and the index of the dynamic symbol that is referenced. The macros
COFF_R_SYM and COFF_R_TYPE access the individual attributes. The relocation type must be
R_REFQUAD, R_REFLONG, or R_NULL.

reserved

Must be zero.

6.2.4. Msym Table Entry

typedef struct {
        coff_uint ms_hash_value;
        coff_uint ms_info;
} Coff_Msym;

SIZE - 8 bytes, ALIGNMENT - 4 bytes

See Section 6.3.3.4 for related information.

Msym Table Entry Fields

ms_hash_value

Contains the hash value computed from the name of the corresponding dynamic symbol.

ms_info

Contains both the dynamic relocation index and the symbol flags field. The macros
COFF_MS_REL_INDEX and COFF_MS_FLAGS are used to acess the individual values. The dynamic
relocation index identifies the first entry in the .rel.dyn section that references the dynamic symbol
corresponding to this msym entry. If the index is 0, no dynamic relocations are associated with the
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symbol. The symbol flags field is reserved for future use and should be zero.

6.2.5. Library List Entry

typedef struct {
        coff_uint l_name;
        coff_uint l_time_stamp;
        coff_uint l_checksum;
        coff_uint l_version;
        coff_uint l_flags;
} Coff_Lib;

SIZE - 20 bytes, ALIGNMENT - 4 bytes

See Section 6.3.2 for related information.

Library List Entry Fields

l_name

Records the name of a shared library dependency. The value is a string table index. This name can be a
full pathname, relative pathname, or file name.

l_time_stamp

Records the time stamp of a shared library dependency. The value can be combined with the
l_checksum value and the l_version string to form a unique identifier for this shared library file.

l_checksum

Records the checksum of a shared library dependency.

l_version

Records the interface version of a shared library dependency. The value is a string table index.

l_flags

Specifies a set of 1-bit flags. The l_flags field can have one or more of the flags described in Table
6-6.
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Table 6-6 Library List Flags

Name Value Description

LL_EXACT_MATCH 0x01 Requires that the run-time dynamic shared library file match
exactly the shared library file used at static link time.

LL_IGNORE_INT_VER 0x02 Ignores any version incompatibility between the dynamic
shared library file and the shared library file used at link time.

LL_USE_SO_SUFFIX 0x04

Marks shared library dependencies that should be loaded with
a suffix appended to the name. The DT_SO_SUFFIX entry in
the .dynamic section records the name of this suffix. This is
used by object instrumentation tools to distinguish
instrumented shared libraries.

LL_NO_LOAD 0x08

Marks entries for shared libraries that are not loaded as direct
dependencies of an object. Object instrumentation tools may
use LL_NO_LOAD entries to set the LL_USE_SO_SUFFIX
for dynamically loaded shared libraries or for indirect shared
library dependencies.

If neither LL_EXACT_MATCH nor LL_IGNORE_INT_VER bits are set, the dynamic loader requires
that the version of the dynamic shared library match at least one of the colon-separated version strings
indexed by the l_version string table index.

6.2.6. Conflict Entry

typedef struct {
        coff_uint   c_index;
} Coff_Conflict;

SIZE - 4 bytes, ALIGNMENT - 4 bytes

The conflict entry is an index into the dynamic symbols (.dynsym) section. See Section 6.3.6.2 for related
information.

6.2.7. GOT Entry

typedef struct {
        coff_addr   g_index;
} Coff_Got;

SIZE - 8 bytes, ALIGNMENT - 8 bytes

The GOT entry is a 64-bit address. Most GOT entries map to dynamic symbols. See Section 6.3.3 for
details.

6.2.8. Hash Table Entry

The hash table is implemented as an array of 32-bit values. The structure is declared internal to system
utilities.
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See Section 6.3.3.5 for more information.

6.2.9. Dynamic String Table

The dynamic string table consists of null-terminated character strings. The strings are of varying length and
separated only by a single character. Offsets into the dynamic string table give the number of bytes from
the beginning of the string space to the beginning of the name in question.

Offset 0 in the dynamic string table is reserved for the null string.
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6.3. Dynamic Loading Information Usage

6.3.1. Shared Object Identification

A shared object is either a dynamic executable or a shared library. The file header flags indicate whether
the object is a shared object and, if so, what type of shared object it is. The layout of the object is also
stated in the file header. Normally shared objects use a ZMAGIC image layout (see Section 2.3.2.3).

Additional information on the shared object is located in the dynamic header (.dynamic section). When
the dynamic loader is invoked by the kernel's exec() routine, this header information is read.

The kernel and loader take the following steps upon receiving a user command to execute a dynamic
executable:

1) User enters command.

2) Shell calls exec() in kernel.

3) Exec() opens the file and reads the file header.

4) If the file is a dynamic executable, exec() calls /sbin/loader.

5) The loader then:

a) Reads file header and dynamic header information.

b) Maps the executable into memory.

c) Locates each shared library dependency, relocates it if necessary, and maps it into memory.

d) Resolves symbols for all shared objects.

e) Sets the heap address.

f) Transfers control to program entry point.

6) The program entrypoint (__start in crt0.o) then:

a) Calls special symbol __istart which invokes the loader routine to run INIT routines

b) Calls main with __Argc, __Argv, __environ and _auxv.

6.3.2. Shared Library Dependencies

Dynamic executables usually rely on shared libraries. At load time, these shared libraries must be located,
validated, and mapped with the process image.

If an executable object refers to a symbol whose definition resides in a shared library, the executable is
dependent on that library. This relationship is described as a direct dependency. A shared library
dependency also exists if a library is used by any previously identified dependency. This is an indirect
dependency for the executable.
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In the example shown in Figure 6-2, libA, libB, and libcool are all shared library dependencies for
a.out. The library libA is a direct dependency, and the others are indirect dependencies.

Figure 6-2 Shared Library Dependencies

Although the possibility of duplicate dependencies exists, as in the preceding example, each library is
mapped only once with the image. The linker also prevents recursive inclusion, which could occur in a case
of cyclic dependencies.

6.3.2.1. Identification

A shared object's dependencies are stored in its .liblist entries and in DT_NEEDED entries in the
.dynamic section. The linker records this information as dependencies are encountered.

The library list (.liblist section) has name, timestamp, checksum, and version information for every
entry, along with a flags field. Taken together, the timestamp and checksum value and the version string
form a unique identifier for a shared library. An entry is created for each shared library dependency.

A DT_NEEDED tag in the dynamic header also indicates a shared library dependency. The value of the
entry is the string table offset for the needed library's name. Note that this representation of the dependency
information is redundant with that contained in the library list. The loader relies on the library list only. The
DT_NEEDED entries are maintained for historical reasons.

As an example, an object linked against libc has the following dependency information:

     ***DYNAMIC SECTION***

     LIBLISTNO: 1.
     LIBLIST:   0x0000000120000690
     NEEDED:    libc.so

     ***LIBRARY LIST SECTION***

     Name             Time-Stamp        CheckSum   Flags Version
a.out:
     libc.so      May 19 22:18:46 1996 0xf937323b     0 osf.1
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A shared library's checksum is computed by the linker when the library is created or updated, and the value
is written into the dynamic header. When an application is linked against the library, the linker copies the
library's current checksum into its entry in the application's .liblist.

The checksum computation is a summation of the names of dynamic symbols that meet the following
criteria:

• Defined

• Not local

• Not hidden

• Not duplicate

Common storage class symbol names are included, along with their size. Weak symbols are included, but
the calculation for weak symbols differs from that used for non-weak symbols.

For a single symbol, the checksum is computed using this algorithm :

if (SYMBOL.st_shndx == SHN_COMMON || SYMBOL.st_shndx == SHN_ACOMMON)
    CHECKSUM = SYMBOL.st_size
else
    CHECKSUM = 0

for (# of characters in symbol name)
    CHECKSUM = (CHECKSUM << 5) + character_value

if (weak symbol)
    CHECKSUM = (CHECKSUM << 5) + CHECKSUM + 1

A change in the number of weak symbols or a change in the size of a common storage class symbol is
therefore reflected in the checksum. However, the checksum calculation is insensitive to symbol
reordering.

The checksums for all symbols included are summed to produce the shared object's checksum.

6.3.2.2. Searching

After loading an executable, the loader loads the executable's shared library dependencies.  The loader
searches for shared libraries that match the names contained in the executable's .liblist entries. Subject
to the search guidelines described in this section, the loader will load the first matching shared library that it
finds for each dependency.

Certain directories are searched by default, in the following order:

1) /usr/shlib

2) /usr/ccs/lib

3) /usr/lib/cmplrs/cc

4) /usr/lib
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5) /usr/local/lib

6) /var/shlib

The loader's search path can be altered by several methods:

• -soname linker option

• -rpath linker option

• environment variables

The -soname option is used to set internal shared library names. The default soname is the output file
name of the library when it is built. The linker uses an soname value to record shared library dependencies
in the library list. Dependencies containing pathnames are located without prepending search directories to
their paths. A pathname is identified by the presence of one or more slashes in the string.

The RPATH is included in a shared object's .dynamic section under an entry tagged DT_RPATH. It is a
colon-separated list of shared library search directories. The RPATH is set using the -rpath linker option.
The loader will search RPATH directories prior to searching LD_LIBRARY_PATH and default directories.

The environment variables that impact the search order are LD_LIBRARY_PATH and _RLD_ROOT.
LD_LIBRARY_PATH has the same format as rpath. No root directories are prepended to the
LD_LIBRARY_PATH directories. LD_LIBRARY_PATH can also be set by a program before it calls
dlopen().

The _RLD_ROOT environnment variable is a colon-separated list of "root" directories that are prepended to
other search directories. It modifies RPATH and the default search directories.

The precedence (highest to lowest) of search directories used by the loader is as follows:

1) soname (if it includes a path)

2) _RLD_ROOT + RPATH

3) LD_LIBRARY_PATH

4) _RLD_ROOT + default search directories

When using non-system libraries, it is often necessary to specify the search path rather than relying on the
defaults. Here is one example:

$ ld -shared -o my.so mylib.o -lc
$ cc -o hello hello.c my.so
$ hello
7526:hello: /sbin/loader: Fatal Error: cannot map my.so
$ LD_LIBRARY_PATH=.
$ export LD_LIBRARY_PATH
$ hello
Hello, World!
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6.3.2.3. Validation

One of the loader's jobs is to ensure that correct shared libraries are available to the program. Shared library
versioning is used to distinguish incompatible versions of shared libraries. The loader tests for matching
versions when shared library dependences are loaded. If the application is found to be incompatible with a
needed shared library, the program may have to be recoded or relinked. Causes of binary incompatibility
include altered global data definitions and changes to documented interfaces.

Each shared library is built with a version identifer. This identifier is recorded in the .dynamic section
with the tag DT_IVERSION. Each entry in the dependency information (.liblist section) also records
the version identifier of a shared library dependency. The -set_version linker option is used to provide
the version identifier. Without this option, the linker will build a shared library with a null version. Version
identifiers can be any ASCII string.

Version checking can also be controlled by the user. The linker option -exact_version leads to more
rigorous version testing by the loader. When this option is in effect, timestamps and checksums are checked
in addition to version numbers. The linker-recorded dependency information for the timestamp and
checksum must precisely match the load-time values for all shared libraries. Normally, a mismatch leads to
additional symbol resolution work instead of a rejected object.

Version checking can be disabled through use of the loader environment variable _RLD_ARGS. Setting this
variable to -ignore_all_versions disables version testing for all shared library dependencies.
Setting it to -ignore_version with a library name parameter turns off version checking for that
specific dependency.

By default, versions are checked, but not checksums or timestamps. If version testing fails, the loader
searches for the matching version of the shared library.

The version identifiers are used to locate version-specific libraries. The loader looks for these libraries in:

1) dirname/version_id

2) /usr/shlib/version_id

where dirname is the first directory where a library with a matching name but non-matching version is
found.

For example, if an application needs version 1 of a shared library but the loader first encounters version 2,
it continues looking for the correct version.

6.3.2.3.1. Backward Compatibility

When shared libraries are modified and new versions built, the older versions are frequently retained to
support previously linked applications. Maintaining multiple versions of the library helps ensure backward
compatibility for existing applications even after binary-incompatible changes have been made.

Backward-compatible shared libraries can be:

• Complete independent shared libraries

• Partial shared libraries that import missing symbols from other versions of the same shared libraries

The advantage of partial shared libraries is that they require less disk space; a disadvantage is that they
require more swap space.
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The linker's -L option can be used to link with backward-compatible shared libraries. Warnings are
generated when a shared library is linked with dependencies on different versions of the same shared
library. However, the linker tests direct dependencies only. The option -transitive_link should be
used to uncover all multiple-version dependencies.

Multiple versions of the same shared library can only be loaded to support partial shared library
dependencies. Otherwise, dependencies on multiple versions of a library are invalid.

Figure 6-3 shows examples of valid uses of multiple versions.

Figure 6-3 Valid Shared Library with Multiple Versions
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Figure 6-4 shows examples of invalid uses of multiple versions.

Figure 6-4 Invalid Shared Library with Multiple Versions

6.3.2.4. Loading

The executable object is placed in memory first, at the segment base addresses designated by the linker and
recorded in the a.out header. These addresses are never changed during the lifetime of the executable's
image. After the executable file's segments have been mapped into memory, shared library dependencies
are loaded. Shared library dependencies are mapped recursively.

The linker chooses quickstart addresses for the text and data regions of shared libraries. The loader attempts
to map shared libraries to their quickstart addresses. If this attempt fails because another library has already
been mapped to the same address range, the library is relocated to a different address. Note that this
problem could be caused by a library mapped by another process. The system tries to map no more than
one shared library at a particular virtual address range, system-wide.

Additional dependencies, not present in the library list, can be dynamically loaded using a dlopen() call.
Again, the loader will attempt to load the library at its quickstart addresses and will relocate it if necessary.

When a shared library is relocated, its text and data segments must move the same distance in memory.  By
fixing the distance between these segments at link time, the number of dynamic relocations is minimized
and restricted to the data segment.
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6.3.2.4.1. Dynamic Loading and Unloading

Dependencies can be loaded and unloaded during execution by using the dlopen and dlclose system
functions.

The dlopen routine accepts a library name and loads the library and its dependencies. The loader resolves
all symbols in all shared objects while processing a dlopen call. If the library was previously loaded,
dlopen re-resolves global symbols and returns a handle without loading any new objects.

The loader maintains a count of references made to all shared objects that have been loaded. For example,
if libm.so is dependent upon libc.so, libc's reference count is incremented when the libraries are
loaded. This reference counting is part of an effort to ensure that a library is never unloaded prematurely.
As an additional precaution to avoid unloading a library that is still needed, the number of existing
dlopen handles is tracked by the loader. This dlopen count is incremented each time a dlopen call is
made for a particular object.

The dlclose routine unloads a shared library and its dependencies. It accepts a handle that was returned
by dlopen.

The dlclose routine will not unload shared libraries that are still in use. Both the dlopen count and
the reference count are checked and should be zero before a library is unloaded.

The dlclose routine cannot unload an executable. It is designed for shared libraries only. It also cannot
unload a shared library that was not dynamically loaded by dlopen.

Objects with TLS data can be dynamically loaded or unloaded during process execution. A new TLS
region is allocated for all existing threads when an object with TLS data is loaded. Similarly, the TLS
region will be deallocated for all threads when the object is unloaded.

6.3.3. Dynamic Symbol Information

The dynamic symbol table is created at link time for shared objects. Its primary purpose is to enable
dynamic symbol resolution. Run-time address information for dynamic symbols is contained in the GOT
section (.got).

The dynamic symbol section (.dynsym) provides information on globally scoped symbols that are defined
or used by the object. This section consists of a table of dynamic symbol entries. The entries are ordered as
follows:

1) A single null entry

2) Symbols local to the object

3) Unreferenced global symbols

4) Referenced global symbols (corresponding to GOT entries)

5) Relocations-referenced global symbols (corresponding to special final GOT)

Local symbols are global in scope but are not exported to other objects. The local portion of the dynamic
symbol table contains system symbols representing the sections of the object: .text, .data, and other
linker-defined symbols. Typically, they do not have GOT entries.
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Unreferenced globals are symbols that can be exported but are not referenced by the defining object. They
are present in the dynamic symbol table so that other shared objects can import and use them. Unreferenced
globals do not have GOT entries.

Referenced globals are exported and are used internally. Dynamic symbols in this category have global
GOT entries.

Global symbols that are referenced only by the object's dynamic relocation entries are grouped at the end of
the dynamic symbol table, corresponding to a special final GOT. These symbols require GOT entries to
record their run-time addresses used in processing dynamic relocations.  This special GOT is only used by
the loader and is never directly referenced by the program itself.

All linker-defined TLS symbols (see Section 2.3.7) have dynamic symbol entries.

Note that the dynamic symbol table itself is never relocated; it contains only link-time addresses (in the
st_value field).

6.3.3.1. Symbol Look-Up

Dynamic symbol look-up is performed by the dlsym(handle,name) routine. The routine searches for the
symbol name beginning in the object associated with the handle. The search is breadth first by default and
depth-first for objects built with the linkers "-B symbolic" option.  If the handle is null, the routine
performs a depth-first search beginning at the main executable.

It is important to use the dlsym interface for symbol look-up to avoid using an outdated address. This
problem can be caused by an improper compiler assumption that a symbol's address will not change after
load-time. A symbol's address may be cached as an optimization and not reloaded thereafter. However, that
address may be changed during execution as the result of dynamic loading and unloading.

6.3.3.2. Scope and Binding

The concept of scope in the dynamic symbol table differs somewhat from the concept of scope in the
regular symbol table because the dynamic symbol table contains only global user-program symbols. The
terms "local" and "external" thus have different meanings in this context.

The two scoping levels for symbols in the dynamic symbol table are object scope and process scope. A
symbol with object scope is local to the shared object and can only be referenced in the library or
executable where it is defined. A symbol with process scope is visible to all program components, and may
be referenced anywhere. A symbol with process scope can also be preempted by a higher-precedence
definition in another shared object.

Note that the distinction between object scope and process scope does not correspond directly to the
local/global symbol division in the dynamic symbol table. All symbols in the local part of the table have
object scope, but global dynamic symbols can be internal to the object as well. Another factor, called
binding, comes into play.

The possible bind values in the dynamic symbol table are local, global, weak, and duplicate. These values
are encoded in the st_info field of the dynamic symbol entry. (See Section 6.2.2 for details.)

Users are able to designate global symbols as "hidden". In the dynamic symbol table, hidden symbols have
a local binding. This representation ensures that they will not be exported from the object and will not
preempt any other symbol definition. Also, internal references to hidden symbols will not be preempted.
The linker's "-hidden_symbol symbol" option can be used to specify a hidden symbol.
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Weak symbols are also a special-case category of global symbols that have the same scope as globals but a
lower precedence for symbol resolution conflicts. See Section 6.3.4.2 for details.

6.3.3.3. Multiple GOT Representation

The GOT contains address information for all referenced external symbols in the dynamic symbol table.
Observe that the GOT is the source of final, run-time addresses, whereas the symbol table contains only
link-time addresses. To access a dynamic symbol, the GOT must be referenced. To associate GOT entries
with dynamic symbol table entries, the symbol table and GOT are aligned as shown in Figure 6-5.

Figure 6-5 Dynamic Symbol Table and Multiple-GOT

Note that the GOT also contains entries that do not correspond to dynamic symbols. These are placed at the
top of each GOT table.

The maximum number of entries in a GOT is 8189. A single GOT may be sufficient to represent all
necessary addresses for an object, but one or more additional GOTs are sometimes required, as illustrated
in Figure 6-5. One GOT table can contain entries from multiple input objects, but a single object's entries
cannot be split between two tables. The linker also builds a separate, final GOT for relocatable global
symbols, referenced only in the dynamic relocation section. These constraints generally result in some
unused GOT entries at the bottom of each table.

The loader recognizes a multiple-GOT object by examining the dynamic header. A DT_GOTSYM entry
exists in the dynamic header for each GOT. This entry holds the index of the first dynamic symbol table
entry corresponding to a GOT entry. A DT_LOCAL_GOTNO entry exists for each GOT as well. This entry
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contains the index of the first global entry in that GOT. The number of DT_GOTSYM entries and
DT_LOCAL_GOTNO entries in the dynamic header should match.  They are also expected to occur in
ascending numerical order.

The first (zero-indexed) entry for every GOT in a multiple-GOT object points to the loader's lazy-text-
resolve entry point. In the final GOT (consisting of relocatable symbols), it is present even though it is
unused.

Multiple-GOT objects may contain duplicate symbols. A symbol appears only once per GOT, but it can be
duplicated in other GOTs. All duplicate symbols, marked in the symbol table as STB_DUPLICATE, have
an associated primary symbol. The primary symbol is simply the first instance of a duplicate symbol. The
st_size field for a duplicate symbol is the dynamic symbol table index of the primary symbol. When a
symbol is resolved in a multiple-GOT situation, all duplicates must be found and resolved as well.

6.3.3.4. Msym Table

The msym table, which is stored in the .msym section of a shared object file, maps dynamic symbol hash
values to the first of any dynamic relocations for that symbol. This section is included for performance
reasons to avoid time-consuming and repetitive hashing calculations during symbol resolution.

An entry in the msym table contains a hash value and an information field. The information field can be
masked to obtain a dynamic relocation index and a flags field. The size of the msym table is the same as the
size of the dynamic symbol table; the two tables line up directly and have matching indices.

The msym table is referenced repeatedly when an object is opened.  The loader resolves symbols by
searching all shared objects for matching definitions.  The search requires a hash value computed from the
symbol name.  The msym table provides precomputed hash values for symbols to avoid the costly hash
computation at load time.

Figure 6-6 Msym Table

The .msym section is an optional object file section; it is not produced by default. The linker's -msym
option causes the msym table to be generated. If the .msym section is not present in a shared object, the
loader will create the table each time that the object is loaded. For this reason, it is often preferable to
specify the .msym section's inclusion when building shared objects.
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6.3.3.5. Hash Table

A hash table, stored in the .hash section of a shared object file, provides fast access to symbol entries in
the dynamic symbol section. The table is implemented as an array of 32-bit integers.

The hash table has the format shown in Figure 6-7.

Figure 6-7 Hash Table

The entries in the hash table contain the following information:

• The nbucket entry indicates the number of entries in the bucket array.

• The nchain entry indicates the number of entries in the chain array.

• The bucket and chain arrays both hold dynamic symbol table indices, and the entries in chain
parallel the dynamic symbol table. The value of nchain is equal to the number of symbol table
entries. Symbol table indices can be used to select chain entries.

The hashing function accepts a symbol name and returns the hash value, which can be used to compute a
bucket index. If the hashing function returns the value X for a name, X%nbucket is the bucket index. The
hash table entry bucket[X%nbucket] gives an index, Y, into the dynamic symbol table.

The loader must determine whether the indexed symbol is the correct one. It checks the corresponding
dynamic symbol's hash value in the msym table and its name.

If the symbol table entry indicated is not the correct one, the hash table entry chain[Y] indicates the next
symbol table entry for a dynamic symbol with the same hash value. The indexed symbol is again checked
by the loader. If it is incorrect, the same index is used in the chain array to try the next symbol that has
the same hash value. The chain links can be followed in this manner until the correct symbol table entry
is located or until the chain entry contains the value STN_UNDEF.

As an example, assume that a symbol with the hash value 12 is sought. If there are ten buckets, the
calculation 12 % 10 gives the bucket index 2, which signifies the third bucket. A bucket index translates
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into a hash table index as bucket[i]=hash[i+2]. If that bucket contains a 3, the dynamic symbol
table entry with an index of 3 is checked. If the symbol is incorrect, the hash table entry chain[3] is
accessed to get the next possible symbol index. A chain index translates into a hash table index as
chain[i]=hash[nbucket+2+i]. If chain[3] is 7, the dynamic symbol table entry with an index
of 7 is checked. If it is the correct symbol, the search is successful and halts.

The structures used in this example are shown in Figure 6-8.

Figure 6-8 Hashing Example

6.3.4. Dynamic Symbol Resolution

The dynamic loader must perform symbol resolution for unresolved symbols that remain after link time. A
post-link unresolved symbol is one that was not defined in a shared object or in any of the shared object's
shared library dependencies searched by the linker. If a dependency is changed before execution or
additional libraries are dynamically loaded, the loader will attempt to resolve the symbol.

The linker accepts unresolved symbols when linking shared objects and records them in the dynamic
symbol (.dynsym) section. The loader recognizes an unresolved symbol by a symbol type of undefined
(st_shndx == SHN_UNDEF) and a symbol value of zero (st_value == 0) in the dynamic symbol
table. For such symbols, the GOT value distinguishes imported symbols from symbols that are unresolved
across all shared objects.

Table 6-7 gives a rough idea of different categories of symbols and how they are represented in the
dynamic symbol table.  Run-time addresses are stored in the GOT.  They can be pre-computed by the linker
and adjusted at load time.
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Table 6-7 Dynamic Symbol Categories

Description Type Section Value GOT

defined item
OBJECT,
FUNC

TEXT, DATA,
ACOMMON

address address

imported function FUNC UNDEF 0 address (in defining object)

imported data OBJECT UNDEF 0 address (in defining object)

common COMMON OBJECT alignment
address of allocated common (in
defining object)

unresolved function FUNC UNDEF 0 stub address

unresolved data OBJECT UNDEF 0 0

The loader performs symbol resolution during initial load of a program. The amount of symbol resolution
work required by a program varies (see Section 6.3.4.6).

The loader can also perform dynamic symbol resolution for particular symbols during program execution.
If new dependencies are added or existing dependencies are rearranged, externally visible symbols (those
with process scope) must be re-resolved.

Unresolved text symbols can be resolved at run time instead of load time (see Section 6.3.4.5).

6.3.4.1. Symbol Preemption and Namespace Pollution

A namespace is a scope within which symbol names should all be unique. In a namespace, a given name is
bound to a single item, wherever it may be used. This generic use of the term "namespace" is distinct from
the C++ namespace construct, which is discussed in Section 5.3.6.4.

Dynamic executables running on Tru64 UNIX share a namespace with their shared library dependencies.
This policy is implemented with symbol preemption. Symbol preemption, also referred to as "hooking", is a
mechanism by which all references to a multiply defined symbol are resolved to the same instance of the
symbol.

Advantages of symbol preemption include:

• All shared objects use one global namespace.

• Dynamic and static executables behave more consistently.

• Applications can replace library routines to debug, improve, or customize them.

Disadvantages include extra load time for symbol resolution and potential problems resulting from
namespace pollution.

Namespace pollution can occur during the use of shared libraries. A library routine may malfunction if it
calls or accesses a global symbol that is redefined by another shared library or application.  Figure 6-9
presents an example of this situation.
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Figure 6-9 Namespace Pollution

Namespace pollution is partly covered by ANSI standards.  Namespace conflicts that occur between libc
and ANSI compliant programs must not affect the behavior of ANSI defined functions implemented in libc.

The identifiers reserved for use by the library are:

• Names beginning with underscores

• ANSI defined symbols (fopen, malloc, and so forth)

All other names are available to user programs. User versions of non-reserved identifiers preempt library
versions.

Historically, system libraries have used many unreserved symbols. To achieve compliance with the ANSI
standard, global symbols have undergone a name change. Documented interfaces have been retained as
weak symbols (see Section 6.3.4.2). Their strong counterparts have names that are formed by prepending
two underscores to the corresponding weak symbol's name.

Hidden symbols do not cause namespace pollution problems and cannot be preempted because they are not
exported from the shared object where they are defined.

The linker options -hidden_symbol and -exported_symbol turn the hidden attribute on or off for
a given symbol name. The options -hidden -non_hidden turn the hidden attribute on or off for all
subsequent symbols.

TLS data symbols have the same name scope as hidden symbols. The names are not shared among multiple
threads.
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6.3.4.2. Weak Symbols

Weak symbols are global symbols that have a lower precedence in symbol resolution than other globals.
Strong symbols are any symbols that are not marked as weak.

Weak symbols can be used as aliases for other weak or strong symbols. This technique can be useful when
it is desirable to provide both a low-precedence name and a high-precedence name for the same data item
or procedure. When the weak symbol is referenced, its strong counterpart is the one actually used.

This aliasing approach employing weak symbols is used in libc.so to avoid namespace pollution
problems. In the example in Figure 6-10, the strong symbol definition in the application takes precedence
over the weak library definition, and the program functions properly.

Figure 6-10 Weak Symbol Resolution (I)
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Figure 6-11 Weak Symbol Resolution (II)

If no non-weak open symbols were defined, references to open would bind to libc's weak symbol, as
shown in Figure 6-11.

Weak symbols can also be used to prevent multiple symbol definition errors or warnings when linking. The
linker does not require a weak symbol to be aliased to a strong symbol, but the loader produces a warning
message if it cannot find a matching strong symbol for a weak symbol it is attempting to resolve.

To find a weak symbol's strong counterpart, the loader follows these steps:

Use hash lookup to find __<NAME> in the dynamic symbol table.
if (not found or not a match)
    foreach symbol in the dynamic symbol table
        Test for match

Matching symbols will have the same st_value, COFF_ST_TYPE(st_info) and st_shndx.

A weak symbol is identified in the dynamic symbol table by a STB_WEAK bind value. In the external
symbol table, a weak symbol has its weak_ext flag set in the EXTR entry.
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Users can specify weak symbols using the .weakext assembler directive or the C #pragma weak
preprocessor directive.

6.3.4.3. Search Order

The symbol resolution policy, or symbol search order, defines the order in which the loader searches for
symbol definitions in a dynamic executable and its dependencies.

Default search order is a breadth-first, left-to-right traversal of the shared object dependency graph.

Figure 6-12 Symbol Resolution Search Order

The search order in Figure 6-12 is: a.out libA libB libc.so libD libE

Objects loaded dynamically by dlopen() are appended to the search order established at load time.
However, dlopen options will determine whether a dynamically loaded object's symbols are visible to
objects that do not include it in their dependency lists. See dlopen(3) for details.

Alternatively, the user can specify the search order by using linker or loader options. The linker's
-depth_ring_search option causes the loader to use a different symbol resolution policy. This policy
is a two-step search:

1) Depth-first search the referencing object and its dependencies

2) Depth-first search from the main executable

Using the depth ring search policy and the dependency graph from Figure 6-12, the search order is:

From Search Order

a.out a.out libA libD libc.so libB libE

libA libA libD libc.so a.out libB libE

libB libB libE libc.so a.out libA libD
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libD libD libc.so a.out libA libB libE

libE libE libc.so a.out libA libD libB

libc.so libc.so a.out libA libD libB libE

6.3.4.4. Precedence

The highest-to-lowest precedence order for dynamic symbol resolution is:

1) Strong text or data

2) Strong largest allocated common

3) Weak data

4) Weak largest allocated common

5) Largest common

6) Weak text

In case (5), the loader allocates the common symbol. This situation only arises when an object containing
an allocated common of the same name has been changed between link time and load time or is
dynamically unloaded during run time. The linker will always allocate a common storage class symbol, but
if there are multiple occurrences of that symbol, the others are retained as unallocated commons.

When symbols have equal precedence, the loader relies on the search order to choose the correct definition
for the symbol.

6.3.4.5. Lazy Text Resolution

Lazy text resolution allows programs to execute without resolving text symbols that are never referenced.

Programs with unresolved text symbols are linked with stub routines. When a program or library calls a
stub routine, the stub calls the loader's lazy_text_resolve entry point with a dynamic symbol index
as an argument. The loader then resolves the text symbol. Subsequent calls will use the true address, which
has replaced the stub in the appropriate GOT entry.

The dynamic symbol table does not contain any explicit information that indicates whether a text symbol
has a stub associated with it. The loader looks for the following clues instead:

• Symbol's st_shndx is SHN_UNDEF

• Symbol's st_value is zero

• Symbol's GOT entry is not 0 and is in text segment's address range

The environment variable LD_BIND_NOW controls the loader's text resolution mode. If the variable has a
non-null value, the bind mode is immediate. If the value is null, the bind mode is deferred. Immediate
binding requires all symbols to be resolved at load time. Deferred binding allows text symbols to be
resolved at run time using lazy text evaluation. The default is deferred binding.
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See Section 3.3.3 for related information.

6.3.4.6. Levels of Resolution

Conditions may exist that cause the loader to do more symbol resolution work for some programs than for
others. The amount of symbol resolution work that is necessary can have a significant impact on a
program's start-up time.

Descriptions of the possible levels of dynamic symbol resolution follow.

Quickstart Resolution

Minimal symbol resolution. For details on quickstart, see Section 6.3.6.

Timestamp Resolution

Moderate symbol resolution. This is used when any of the following are true:

• The executable or one of its dependencies has indirect dependencies that it was not linked with.

• The executable or one of its dependencies has unresolved text symbols that are used in dynamic
relocations.

• A shared library dependency was rebuilt so that the timestamp no longer matches the dependency
information in the executable.

Checksum Resolution

Extensive symbol resolution. This is used when a shared library dependency has been rebuilt and its
checksum no longer matches the dependency information in the executable. The checksum changes if any
of the following conditions are met:

• Global symbols are added

• Global symbols are deleted

• Global symbols change from strong to weak or vice versa

• Common storage class symbols' sizes change.

Binding Resolution

Re-resolve symbols marked UNDEF for immediate binding. This is used by dlopen() to apply immediate
binding symbol resolution to shared objects that were previously resolved with lazy binding.

6.3.5. Dynamic Relocation

The dynamic relocation section describes all locations that must be adjusted within the object if an object is
loaded at an address other than its linked base address.

Although an object may have multiple relocation sections, the linker concatenates all relocation
information present in its input objects. The dynamic loader is thus faced with a single relocation table.
This dynamic relocation table is stored in the .rel.dyn section and is ordered by the corresponding
dynamic symbol index.
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Offset 0 in the dynamic relocation table is reserved for a null entry with all fields zeroed.

All dynamic relocations must be of the type R_REFQUAD or R_REFLONG. This simplifies the dynamic
relocation process. These two relocation types are sufficient to represent all information that is necessary to
accomplish dynamic relocations.  Dynamic relocation entries must only apply to addresses in an object's
data segment.  The object's text segment must not contain any relocatable addresses.

Relocation entries are updated during dynamic symbol resolution. When a dynamic symbol's value
changes, any dynamic relocations associated with that symbol must be updated. To update the entries, the
relocation value is computed by subtracting the old value of the from the new value. This value is then
added to the contents of the relocation targets. The old value of a dynamic symbol is always stored in a
GOT entry. The new value of a dynamic symbol is stored in that GOT entry after dynamic relocations are
processed.

Relocation types other than R_REFQUAD and R_REFLONG are not allowed for dynamic relocations
because no other relocation types apply to absolute addresses stored in data. Most relocation types apply to
values that need to be computed at link time and do not change at run time.

A dynamic executable file may also contain normal relocation sections. If normal relocation entries are
present, the loader ignores them.

6.3.6. Quickstart

Quickstart is a loading technique that uses predetermined addresses to run a program that depends on
shared libraries. It is particularly useful for applications that rely on shared libraries that change
infrequently.

The linker chooses quickstart addresses for all shared library dependencies when a dynamic executable is
linked. These addresses are stored in the registry file normally named so_locations. For details on the
shared library registry file, refer to the Programmer's Guide.

Any modification to a shared library impairs quickstarting of applications that depend on that library. If a
shared library dependency has changed, it may be possible to use the fixso utility to update the
application and thus enable quickstart to succeed.

To verify that an application is quickstarted, set the _RLD_ARGS environment variable to
-quickstart_only.

Additional information on quickstart is available in the Programmer's Guide.

6.3.6.1. Quickstart Levels

Not all shared objects can be successfully quickstarted. If an executable cannot be quickstarted, it still runs,
but start up is slower. Quickstarting is possible for programs requiring minimal symbol resolution at load
time. A dynamic executable is quickstarted if:

• The object's mapped virtual address matches the quickstart address chosen by the linker.

• The object's dependencies have not been modified incompatibly since the object was linked.

• The object's indirect dependencies are all included as direct dependencies.

• The object's dependencies also meet quickstart criteria.
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Each quickstart requirement that is not met by a dynamic executable and its dependencies leads to
additional symbol resolution work.

• If all quickstart requirements are met, only undefined and multiply defined symbols need to be
resolved.

• If the mapped address differs from the quickstart address, addresses of defined symbols must be
adjusted.

• If the timestamp has been changed, external (imported) symbols must be resolved.

• If the checksum has been changed, all symbols must be resolved.

At this point, the timesaving advantage of quickstarting has disappeared.

For quickstart purposes, a link-time shared library matches its associated load-time shared library if the
timestamp and checksum are unchanged. If they have been changed, using the fixso tool may remedy the
situation and enable quickstart to succeed.

6.3.6.2. Conflict Table

The conflict table, stored in the .conflict section, contains a list of symbols that are multiply defined
and must be resolved by the loader. The conflict table is used only when full quickstarting is possible. If
any changes preventing quickstart have occurred, the loader resorts to other methods of symbol resolution.

The linker records conflicts in a shared object's .conflict section if a second definition is found for a
previously-defined symbol. Common storage class symbols are not considered conflicts unless they are
allocated in more than one shared object.

Weak symbols aliased to a newly resolved conflict entry are also treated as conflicts. This means the loader
does not have to search for weak symbols matching conflict symbols. The weak symbols are added to the
conflict list for the first shared library that defined the symbol in question as well as the library where the
conflicting definition was found.

Figure 6-13 shows a simple example of the use of conflict entries.
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Figure 6-13 Conflict Entry Example

In this example, the a.out executable has been linked with liba.so, and a single conflict has been recorded
for the symbol a_error. The conflict is recorded in the executable file at link time because both the
executable and shared library define the symbol. At run time, any calls to a_error from a_sort will be
preempted by the definition of a_error in the a.out executable. Without the conflict entry, the call to
a_error would not be preempted properly when a.out is quickstarted.

6.3.6.3. Repairing Quickstart

The fixso utility updates shared libraries to permit quickstarting of applications that utilize them, even if
the libraries have changed since the executable was originally linked against them. Given a shared object as
input, it updates the object and its dependencies to make them meet quickstart criteria. The library changes
handled by fixso are timestamp and checksum discrepancies.

The fixso utility creates a breadth-first list of the object's dependencies. It then handles conflicts present
in the conflict table. Next, fixso resolves globals, updating global symbol values, dynamic relocation
entries, and GOT entries where necessary. Lastly, if these actions are successful, fixso resets the
timestamp and checksum of its target object.

When a dependency is discovered during processing, fixso automatically opens the associated object and
adds it to the object list if possible. The dependency will be found and opened if it is located in the default
library search path, the path indicated by the LD_LIBRARY_PATH environment variable, or the path
specified in the command line. Otherwise, it may be necessary to run the fixso program on the library
separately, before fixing the target object.

Some changes made to shared libraries cannot be reconciled by fixso. The fixso utility does not
support:

• Increases in size required in the conflict list (new conflicts)

• Movement of the library in memory
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• Discrepancies in interface versions

• Changes to a library's path

• Discrepancies in soname values
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7. Comment Section

The Tru64 UNIX object file format supports a mechanism for storing information that is not part of a
program's code or data and is not loaded into memory during execution. The comment section
(.comment) is used for this purpose. Typically, this section contains information that describes an object
but is not required for the correct operation of the object. Any kind of object file can have a comment
section.

7.1. New and Changed Comment Section Features

Version 3.13 of the object file format introduces the following new features for comment sections:

• New comment subsection types (see Table 7-1)

• Tag descriptors for describing comment subsections (see Section 7.3.4.1)

• Toolversion information for tool specific versioning of object files (see Section 7.3.4.2)

7.2. Structures, Fields, and Values of the Comment Section

All declarations described in this section are found in the header file scncomment.h.

7.2.1. Subsection Headers

The comment section begins with a set of header structures, each describing a separate subsection.

typedef struct {
        coff_uint        cm_tag;
        coff_uint        cm_len;
        coff_ulong       cm_val;
} CMHDR;

SIZE - 16 bytes, ALIGNMENT - 8 bytes

Subsection Header (CMHDR) Fields

cm_tag

Identifies the type of data in this subsection of the .comment section. This value may be recognized
by system tools. If it is not recognized, generic processing occurs, as described in Section 7.3.3.  Refer
to Table 7-1 for a list of system-defined comment tags.

cm_len

Specifies the unpadded length (in bytes) of this subsection's data. If cm_len is zero, the data is stored
in the cm_val field. The padded length is this value rounded up to the nearest 16-byte boundary.

cm_val

Provides either a pointer to this subsection's data or the data itself. If cm_len is nonzero, cm_val is a
relative file offset to the start of the data from the beginning of the .comment section. If cm_len is
zero, this field contains all data for that subsection. In the latter case, the size of the data is considered
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to be the size of the field (8 bytes).

Table 7-1 Comment Section Tag Values

Tag Value Description

CM_END 0 Last subsection header. Must be present.

CM_CMSTAMP 3

First subsection header.  The cm_val field contains a
version stamp that identifies the version of the
comment section format.  The current definition of
CM_VERSION is 0. Must be present.

CM_COMPACT_RLC 4 Compact relocation data. See Section 4.4 for details.

CM_STRSPACE 5 Generic string space.

CM_TAGDESC 6
Subsection containing flags that tell tools how to
process unfamiliar subsections.  See Section 7.2.2 and
Section 7.3.4.1.

CM_IDENT 7 Identification string.  Reserved for system use.

CM_TOOLVER 8 Tool-specific version information.  See Section 7.3.4.2.

CM_LOUSER 0x80000000 Beginning of user tag value range (inclusive).

CM_HIUSER 0xffffffff End of user tag value range (inclusive).

7.2.2. Tag Descriptor Entry

Tag descriptors are used to specify behavior for tools that modify object files and potentially affect the
accuracy of comment subsection data. They are especially useful as processing guidelines for tools that do
not understand certain subsections. Tools which have specific knowledge of certain comment subsection
types can ignore the tag descriptor settings for subsection type. The tag descriptors are stored in the raw
data of the CM_TAGDESC subsection. See Section 7.3.4.1 for more information.

typedef struct {
        coff_uint tag;
        cm_flags_t flags;
} cm_td_t;

SIZE - 8 bytes, ALIGNMENT - 4 bytes

Tag Descriptor Fields

tag

Tag value of subsection being described.
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flags

Flag settings.  See Section 7.2.2.1.

7.2.2.1. Comment Section Flags

typedef struct {
        coff_uint cmf_strip   :3;
        coff_uint cmf_combine :5;
        coff_uint cmf_modify  :4;
        coff_uint reserved    :20;
} cm_flags_t;

SIZE - 4 bytes, ALIGNMENT - 4 bytes

Comment Section Flags Fields

cmf_strip

Tells tools that perform stripping operations whether to strip comment section data.

cmf_combine

Tells tools how to combine multiple input subsections of the same.

cmf_modify

Tells tools that modify single object files how to rewrite the input comment section in the output
object.

Table 7-2 Strip Flags

Name Value Description

CMFS_KEEP 0x0 Do not remove this subsection when performing stripping operations.

CMFS_STRIP 0x1 Remove this subsection if stripping the entire symbol table.

CMFS_LSTRIP 0x2 Remove this subsection if stripping local symbolic information or if fully
stripping the symbol table.
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Table 7-3 Combine Flags

Name Value Description

CMFC_APPEND 0x0 Concatenate multiple instances of input subsection data.

CMFC_CHOOSE 0x1 Choose one instance of input subsection data (randomly).

CMFC_DELETE 0x2 Do not output this subsection.

CMFC_ERRMULT 0x3 Raise an error if multiple instances of this subsection are encountered as
input.

CMFC_ERROR 0x4 Raise an error if a subsection of this type is encountered as input.

Table 7-4 Modify Flags

Name Value Description

CMFM_COPY 0x0 Copy this subsection's data unchanged from the input object to the output
object.

CMFM_DELETE 0x1 Do not output a subsection of this type.

CMFM_ERROR 0x2 Raise an error if a subsection of this type is encountered as input.
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7.3. Comment Section Usage

7.3.1. Comment Section Formatting Requirements

The comment section is divided between subsection header structures and an unstructured raw data area.
The subsection headers contain tags that identify the data stored in the subsequent raw data area. Each
header describes a different subsection. The raw data for all subsections follows the last header, as shown
in Figure 7-1.

Figure 7-1 Comment Section Data Organization

Begin and end marker tags are used to denote the boundaries of the structured portion of the comment
section. The begin marker is CM_CMSTAMP, which contains a comments section version stamp, and the
end marker is CM_END. If either of these headers is missing or the version indicated by the value of
CM_CMSTAMP is invalid, the comment section is considered invalid.

The ordering of the subsection headers and their corresponding raw data do not need to match. Nor is the
density of the raw data area guaranteed. However, all subsection headers must be contiguous: no other data
can be placed between them. Furthermore, a one-to-one relationship must exist between the subsection
headers that point into the raw data and the data itself. Subsection raw data must not overlap.

The interpretation of the cm_val field depends on the cm_len field. When cm_len is zero, cm_val
contains arbitrary data whose interpretation depends on the value in the cm_tag field. When cm_len is
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non-zero, cm_val contains a relative file offset from the start of the comment section into the raw data
area.

The start of data allocated in the raw data area must be octaword (16-byte) aligned for each subsection.
Zero-byte padding is inserted at the end of each data item as necessary to maintain this alignment. The
value stored in cm_len represents the actual length of the data, not the padded length.  Tools manipulating
this data must calculate the padded length.

7.3.2. Comment Section Contents

The comment section can contain various types of information.  Each type of information is stored in its
own subsection of the comment section.  Each subsection must have a unique tag value within the section.

The comment section can include supplemental descriptive information about the object file.  For instance,
the tag ST_CM_IDENT points to one or more ASCII strings in the raw data area that serve to identify the
module. Use of this tag is reserved for compilation system object producers such as compilers and
assemblers.

User-defined comment subsections are also possible. The CM_LOUSER and CM_HIUSER tags delimit the
user-defined range of tag values. Potential uses include product version information and miscellaneous
information targeted for specific consumers.

Although no restrictions are put on the type or amount of information that can be placed in the comment
section, it is important to be aware that users have the capability to remove the section entirely (by using
ostrip -c) and that object file consumers may ignore its presence.

The minimal valid comment section consists of a CM_CMSTAMP header and a CM_END header.  Because
no structure field in the object file format holds the number of subsections in the comment section, the
presence of the CM_END header is crucial.  Without it, a consumer cannot determine the number of
subsections present.

7.3.3. Comment Section Processing

Many tools that handle objects read or write the comment section.  Some tools, such as the linker and mcs,
perform special processing of comment section data.  Others may be interested in extracting certain
subsections.   Most object-handling tools provided on the system access the comment section to check for
tool-specific version information (see Section 7.3.4.2).

The linker is both a consumer and producer of the comment section. As with other object file sections, the
linker must combine multiple input comment sections to form a single output section. When comment
sections are encountered in input object files, the linker reads subsection headers and merges the raw data
according to its own defaults and the flag settings of any tag descriptors that are present.

The mcs utility provides comment section manipulation facilities. This tool allows users to add, modify,
delete, or print the comment section from the command line.  The mcs tool can only process objects that
already have a .comment section header–in spite of the fact that the header may indicate that the section
is empty. In all cases, the operations performed by mcs do not affect the object's suitability for linking or
execution. See the mcs(1) man page for more details.

Stripping tools, such as strip and ostrip, also process the comment section.  They read the tag
descriptors to determine what subsections to remove.  The cmf_strip field of the tag descriptor specifies
the stripping behavior.  If the cmf_strip field is set to CMF_STRIP that subsection will be removed if
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an object is fully stripped.  If the cmf_strip field is set to CMF_LSTRIP for a particular subsection
type, that subsection will be removed if an object is fully stripped or locally stripped.

7.3.4. Special Comment Subsections

Comment subsections can have particular structures or semantics that a consumer must know to be able to
read and process them correctly.  Two system-defined subsections with special formatting and processing
rules are the tag descriptors (CM_TAGDESC) and the tool-specific version information (CM_TOOLVER).

Another special subsection contains compact relocation data (CM_COMPACT_RLC).  This topic is covered
in Section 4.4.

7.3.4.1. Tag Descriptors (CM_TAGDESC)

The tag descriptor subsection contains a table of tags and their corresponding flag settings. This
information tells tools how to handle unfamiliar subsections.  The CM_TAGDESC subsection may not be
present, and if present, it may not contain entries for subsections that are present. Also, a tag descriptor may
be present for a subsection that is not found in the object.

A list of possible tag descriptor flag settings can be found in Section 7.2.2.1.  Flag settings are divided into
three categories based on the categories of object tools that need to modify the comment section:

1. Tools that strip object files

2. Tools that combine multiple instances of comment section data

3. Tools that modify and rewrite single object files

The default flag settings for user subsections that do not have tag descriptors are CMFS_KEEP,
CMFC_APPEND, and CMFM_COPY.  Tools that strip or rewrite objects should not modify subsection data
for comment subsections marked with these default flag settings. A tool that combines multiple instances of
subsection data, should concatenate the subsection raw data for same-type input subsections marked with
the default flag settings.

A tool can ignore the tag descriptor flags and default flag settings for a subsection if it recognizes the
subsection type and understands how to process its data.

Some of the system tags have different defaults.  These are shown in Table 7-5. However, tag descriptors in
the CM_TAGDESC subsection can be used to override the default settings for system tag values as well as
user tag values.
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Table 7-5 Default System Tag Flags

Tag Default Flag Settings

CM_END  KEEP, CHOOSE, COPY

CM_CMSTAMP  KEEP, CHOOSE, COPY

CM_COMPACT_RLC  STRIP, DELETE, DELETE

CM_STRSPACE  KEEP, APPEND, COPY

CM_TAGDESC  KEEP, CHOOSE, COPY

CM_IDENT  KEEP, APPEND, COPY

CM_TOOLVER  KEEP, CHOOSE, COPY

Because the size of a tag descriptor entry is fixed, a consumer can determine the number of entries by
dividing the size of the subsection by the size of a single tag descriptor (see Section 7.2.2). If cm_len is
set to zero, a single tag descriptor is stored as immediate data.

7.3.4.2. Tool Version Information (CM_TOOLVER)

The CM_TOOLVER subsection contains tool-specific version entries for system tools that process object
files.  If present, this subsection may have any number of entries.  This subsection can also can also be used
to record version information for non-system tools.

Each tool version entry consists of three parts:

1. Tool name (null-terminated character string)

2. Tool version number (unsigned 8-byte unaligned numeric value)

3. Printable version string (null-terminated character string)

The number of tool version entries cannot be determined from the subsection header because the entries
vary in length.  The data must be read until the entry sought is found or until the end of the subsection's
data is reached.

The encoding of the tool version number is generally tool dependent. The only requirement is that the
value, viewed as an unsigned long, must be monotonically increasing with time.

Typically, an object file consumer uses the tool version information to verify its ability to handle an input
object file. The consumer uses an API (see libst reference pages) to look for a tool version entry with a
tool name matching its own (part one of the entry).  If found, the version number (part two of the entry)
must not exceed the version number of the tool. Otherwise, the tool will print a message instructing the user
to obtain the newer version of the tool, using the printable version string (part three of the entry). This
mechanism can be used as a warning to customers of a necessary upgrade to a newer release of a product,
for instance.
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As an example, a compiler might produce object files with new symbol table information that causes an old
version of the ladebug debugger to produce a fatal error.  To provide more user-friendly behavior for old
versions of the debugger, the compiler outputs a tool version entry:

1. "ladebug"

2. 2

3. "5.0A-BL5"

This entry occupies 25 bytes.  The debugger recognizes its name in the entry and compares the version
number "2" with the version number it was built with.  (Note that the version number is most likely
meaningless to an end user of the debugger.)  In this case, assume that the installed debugger's version
number is "1".  The message "Please obtain version 5.0A-BL5" is output to the user.

Note that the numeric tool version number can be unaligned.  This is an exception to the general rule
requiring alignment of numeric data.
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8. Archives

An archive is a collection of files stored and treated as a single entity.  They are used most commonly to
implement libraries of relocatable objects.  These libraries simplify linking in a program development
environment by allowing the manipulation of one archive file instead of dozens or hundreds of object files.

This chapter covers the archive file format and usage.  The archiver is the tool used to create and manage
archives.  See ar(1) for more information on its facilities.

New and Change Archive Features

Version 5.0 of Tru64 UNIX introduces archive support for extended user and group ids (see ar_uid and
ar_gid in Section 8.1.2)

8.1. Structures, Fields, and Values for Archives

All declarations in this section are from the header file ar.h.

See Section 8.2.1 for more information on the organization of object file contents.

8.1.1. Archive Magic String

The archive magic string identifies a file as an archive.

#define ARMAG "!<arch>\n"
#define SARMAG 8

8.1.2. Archive Header

struct ar_hdr {
        char    ar_name[16];
        char    ar_date[12];
        char    ar_uid[6];
        char    ar_gid[6];
        char    ar_mode[8];
        char    ar_size[10];
        char    ar_fmag[2];
} AR_HDR;

SIZE - 60 bytes, ALIGNMENT - 1 byte

Archive Header Fields

ar_name

File member name, blank-terminated if the length of the name is less than 16 bytes.

File member names that are 16 characters or longer are stored in the special file member called the file
member name table.  In that case, this field contains /offset where offset indicates the byte offset of the
file name within the table.  The offset is a decimal number.

The prefix ARSYMPREF, defined as the 16-byte blank-terminated character string
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________64ELEL_, is stored in this field for the special file member called the symbol definitions
(symdef) file and is used to identify that file.  The ar tool marks an out of date symdef file by
changing the last L in the name to an X (________64ELEX_).

The blank-terminated name // is stored in this field to identify the file member name table.

ar_date

File member date (decimal).

ar_uid

File member user id (decimal).

For a file with a user id greater than USHRT_MAX (65535U), this field will contain //value where
value is a 4-byte unsigned integer.

ar_gid

File member group id (decimal).

For a file with a group id greater than USHRT_MAX (65535U), this field will contain //value where
value is a 4-byte unsigned integer.

ar_mode

File member mode (octal).

ar_size

File member size (decimal).  Sizes reflect padding for the symdef file and the file name table, but not
for file member contents.  File members always start on even byte boundaries. Therefore, if the
ar_size field indicates an odd length, it should be rounded up to the next even number.

ar_fmag

Archive magic string. The possible values are shown in Table 8-1.

Table 8-1 Archive Magic Strings

Symbol Value Meaning

ARFMAG "'\n" File member.  May be a special file member or any type of
file other than a compressed object file.

ARFZMAG "Z\n" Compressed object file member.

General Note:

Archive header fields are stored as character strings and must be converted to numeric types.
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8.1.3. Hash Table (ranlib) Structure

This structure is found only inside the special file member called the "symdef file".  See Section 8.2.2 for
related information.

struct  ranlib {
        union {
            int      ran_strx;
        } ran_un;
        int          ran_off;
};

SIZE - 8 bytes, ALIGNMENT - 4 bytes

Ranlib Structure Fields

ran_strx

Symdef string table index for this symbol's name.

ran_off

Byte offset from the beginning of the archive file to the archive header of the member that defines this
symbol.

General Note :

The ran_un union of this structure has only one field, as shown, for historical reasons.
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8.2. Archive Implementation

8.2.1. Archive File Format

The first SARMAG (8) bytes in an archive file identify it as an archive.  To verify that a file is an archive,
these bytes should be compared with the archive magic string, defined as ARMAG in the header file ar.h.

An archive file consists of the magic string followed by multiple file members, each of which is preceded
by an archive file member header.  File members can be object files, compressed object files, text files, or
files of any other type, and an archive can contain a mix of file types.  A file member can also be one of
two special file members: the symbol definition (or symdef file) or the file member name table.  Figure 8-1
illustrates this file layout.

Figure 8-1 Archive File Organization

The symdef file, if present, is the first file member of an archive.  See Section 8.2.2 for details on the
symdef file.

The file member name table consists of file member names that are too long to fit into the 16-byte name
field of the archive header.  If no file member names are 16 characters or longer, this table is not created.  If
the table is needed, it is the first or second file member.  If a symdef file is present, it is the first file
member and the file member name table is the second.  Otherwise, the file member name table is the first
file member of the archive.

The member header for the file name table might look like this:

struct arhdr {
ar_name = "//              ";
ar_date = "871488454    ";
ar_uid  = "0     ";
ar_gid  = "0     ";
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ar_mode = "0      ";
ar_size = "54        ";
ar_fmag = "'\n";

}

Names in the file member name table are separated by a slash (/) and a linefeed (\n).  For example, the
contents of the file name table for an archive with three long object file names might look like this:

st_cmrlc_basic.o/
st_cmrlc_print.o/
st_object_type.o/

The file member header for a file member whose name is stored in the file name table (in this case, the
object st_cmrlc_print.o) might look like this:

struct arhdr {
ar_name = "/18             ";
ar_date = "871414955    ";
ar_uid  = "9442     ";
ar_gid  = "0     ";
ar_mode = "100600  ";
ar_size = "47296     ";
ar_fmag = "'\n";

}

8.2.2. Symdef File Implementation

The symdef file contains external symbol information for all object file members within an archive. When
present, the symdef file is the first file member of the archive.  The member header for an up-to-date
symdef file might look as follows:

struct arhdr {
ar_name = "_________64ELEL_  ";
ar_date = "871488454    ";
ar_uid = "0     ";
ar_gid = "0     ";
ar_mode = "0      ";
ar_size = "8238      ";
ar_fmag = "'\n";

}

The symdef file is typically present if at least one archive file member is an object file. The linker uses it
when searching for symbol definitions, as long as the file is up to date.  Whenever an archive is modified,
either the symdef file must either be updated or its member name must be changed to reflect the fact that it
is outdated (see Section 8.1.2).

The symdef file consists of a hash table and a string table. The contents of the symdef file are laid out as
follows:

1. Hash Table Size - 4 bytes indicating the number of ranlib structures in the hash table
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2. Hash table - array of ranlib structures

3. String table Size - 4 bytes indicating the size, in bytes, of the symdef string table

4. String table - string space containing symbol names

At a minimum, the symdef file should contain the sizes of the hash and string tables, even if the tables are
empty.

The hash table contains a ran_lib structure for each externally visible symbol defined in any of the
archive file members. The total size of the hash table is two times the number of symbols rounded to the
next highest power of two. Each symbol has a private hash chain that is used for symbol lookup, as shown
in Figure 8-2.

Figure 8-2 Symdef File Hash Table

The hash function produces two values for any name it is given: a hash value and a rehash value.  The hash
value is used for the first lookup.  If the symbol found is not the right one, the rehash value is used for
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chaining.  The chain is followed until the correct symbol is found or until the search returns to the symbol
where it began.

The linker uses the hash structure field ran_off to locate a symbol's definition in the archive.  This field
contains the byte offset from the beginning of the archive file to the file member header of the member
containing the symbol's definition.

Note that symbols appear only once in the symdef file hash table, regardless of how many file members
define them.

8.3. Archive Usage

8.3.1. Role As Libraries

One important use of archives is to serve as static libraries that programs can link against. Such archives
contain a collection of relocatable object files that can be selectively included in an executable image as
required. Archive libraries are the only libraries used in creating static executables.  They can also be used
in conjunction with shared libraries in dynamic executables.

The linker searches archive libraries during symbol resolution.  See the Programmer's Guide or ld(1) for
more information.

8.3.2. Portability

The archive file format is designed to meet current UNIX standards in order to assure portability with other
UNIX systems.

The format of compressed object files within archives is specific to Tru64 UNIX. See Section 1.4.3 for
details.



298

9. Examples

This chapter contains sample programs that illustrate the symbol table representations of various language
constructs. The examples are organized by source language and each consists of a program listing and the
partial symbol table contents for that program. The system symbol table dumpers stdump(1) and
odump(1) were used to produce the output.

9.1. C

9.1.1. Unnamed Structure

See Section 5.3.8.3 for related information.

Source Listing

Struct S1 {
   int abc;
   struct {int x; signed int y; unsigned int z;};
   int rst;
} s1;

Symbol Table Contents

File 0 Local Symbols:

 0. (0)(   0)  unname.c   File     Text      symref  12
 1. (1)( 0xc)             Block    Info      symref  6
 2. (2)(   0)  x          Member   Info      [ 3] int
 3. (2)(0x20)  y          Member   Info      [ 3] int
 4. (2)(0x40)  z          Member   Info      [ 4] unsigned int
 5. (1)(   0)             End      Info      symref 1
 6. (1)(0x14)  S1         Block    Info      symref 11
 7. (2)(   0)  abc        Member   Info      [ 3] int
 8. (2)(0x20)             Member   Info      [ 5] struct(file 0,
                                                  index 2)
 9. (2)(0x80)  rst        Member   Info      [ 3] int
10. (1)(   0)  S1         End      Info      symref 6
11. (0)(   0)  unname.c   End      Text      symref 0

Externals Table:

 0. (file 0)(0x14)  s1    Global   Common    [7] struct(file 0,
                                                 index 6)

9.2. C++

9.2.1. Base and Derived Classes

See Section 5.3.8.6 for related information.

Source Listing

#include <iostream.h>

class employee {
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char *name;
short age;
short deparment;
int salary;

public:

static int stest;
employee *next;
void print() const;

};

class manager : public employee {
employee emp;
employee *group;
short level;

public:

void print() const;
};

void employee::print() const
{
  cout << "name is " << name << '\n';
}

void manager::print() const
{
  employee::print();
}

void f()
{
  manager m1,m2;
  employee e1, e2;
  employee *elist;

  elist=&m1;
  m1.next=&e1;
  e1.next=&m2;
  m2.next=&e2;
  e2.next=0;
}

Symbol Table Contents

File 0 Local Symbols:

  0. ( 0)(   0) bs6.cxx    File       Text       symref 51
  1. ( 1)(   0) employee   Tag        Info       [25] Class(extended file 0,
                                                      index 2)
  2. ( 1)(0x18) employee   Block      Info       symref 17
  3. ( 2)(   0) name       Member     Info       [28] Pointer to char
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  4. ( 2)(0x40) age        Member     Info       [29] short
  5. ( 2)(0x50) deparment  Member     Info       [29] short
  6. ( 2)(0x60) salary     Member     Info       [30] int
  7. ( 2)(0x80) next       Member     Info       [31] Pointer to
                                                      Class(extended file 0,
                                                      index 2)
  8. ( 2)(   0) employee::stest
                           Static     Info       [30] int
  9. ( 2)(   0) employee::print(void) const
                           Proc       Info       [43] endref 12, void
 10. ( 3)(   0) this       Param      Info       [40] Const Pointer to Const
                                                      Class(extended file 0,
                                                      index 2)
 11. ( 2)(   0) employee::print(void) const
                           End        Info       symref 9
 12. ( 2)(   0) employee::operator =(const employee&)
                           Proc       Info       [57] endref 16, Reference
                                                      Class(extended file 0,
                                                      index 2)
 13. ( 3)(   0) this       Param      Info       [48] Const Pointer to
                                                      Class(extended file 0,
                                                      index 2)
 14. ( 3)(   0)            Param      Info       [54] Reference Const
                                                      Class(extended file 0,
                                                      index 2)
 15. ( 2)(   0) employee::operator =(const employee&)
                           End        Info       symref 12
 16. ( 1)(   0) employee   End        Info       symref 2
 17. ( 1)(   0) manager    Tag        Info       [61] Class(extended file 0,
                                                      index 18)
 18. ( 1)(0x40) manager    Block      Info       symref 31
 19. ( 2)(   0) employee   Base Class Info       [25] Class(extended file 0,
                                                      index 2)
 20. ( 2)(0xc0) emp        Member     Info       [25] Class(extended file 0,
                                                      index 2)
 21. ( 2)(0x180) group     Member     Info       [31] Pointer to Class(extended
                                                      file 0, index 2)
 22. ( 2)(0x1c0) level     Member     Info       [29] short
 23. ( 2)(   0) manager::print(void) const
                           Proc       Info       [73] endref 26, void
 24. ( 3)(   0) this       Param      Info       [70] Const Pointer to Const
                                                      Class(extended file 0,
                                                      index 18)
 25. ( 2)(   0) manager::print(void) const
                           End        Info       symref 23
 26. ( 2)(   0) manager::operator =(const manager&)
                           Proc       Info       [90] endref 30, Reference
                                                      Class(extended file 0,
                                                      index 18)
 27. ( 3)(   0) this       Param      Info       [81] Const Pointer to
                                                      Class(extended file 0,
                                                      index 18)
 28. ( 3)(   0)            Param      Info       [87] Reference Const
                                                      Class(extended file 0,
                                                      index 18)
 29. ( 2)(   0) manager::operator =(const manager&)
                           End        Info       symref 26
 30. ( 1)(   0) manager    End        Info       symref 18
 31. ( 1)(   0) employee::print(void) const
                           Proc       Text       [414] endref 36, void
 32. ( 2)( 0x9) this       Param      Register   [416] Const Pointer to Const
                                                       Class(extended file 0,
                                                       index 2)
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 33. ( 2)(0x18)            Block      Text       symref 35
 34. ( 2)(0x60)            End        Text       symref 33
 35. ( 1)(0x70) employee::print(void) const
                           End        Text       symref 31
 36. ( 1)(0x70) manager::print(void) const
                           Proc       Text       [419] endref 41, void
 37. ( 2)( 0x9) this       Param      Register   [421] Const Pointer to Const
                                                       Class(extended file 0,
                                                       index 18)
 38. ( 2)(0x18)            Block      Text       symref 40
 39. ( 2)(0x2c)            End        Text       symref 38
 40. ( 1)(0x3c) manager::print(void) const
                           End        Text       symref 36
 41. ( 1)(0xac) f(void)    Proc       Text       [424] endref 50, void
 42. ( 2)( 0x8)            Block      Text       symref 49
 43. ( 3)(-64)  m1         Local      Abs        [61] Class(extended file 0,
                                                      index 18)
 44. ( 3)(-128) m2         Local      Abs        [61] Class(extended file 0,
                                                      index 18)
 45. ( 3)(-152) e1         Local      Abs        [25] Class(extended file 0,
                                                      index 2)
 46. ( 3)(-176) e2         Local      Abs        [25] Class(extended file 0,
                                                      index 2)
 47. ( 3)(   0) elist      Local      Register   [31] Pointer to Class(extended
                                                      file 0, index 2)
 48. ( 2)(0x28)            End        Text       symref 42
 49. ( 1)(0x30) f(void)    End        Text       symref 41
 50. ( 0)(   0) bs6.cxx    End        Text       symref 0
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9.2.2. Virtual Function Tables and Interludes

Source Listing

class Base1 {
  public:
    virtual int virtual_mem_func() { return 1; }
};

class Base2 : virtual public Base1 {
  public:
    virtual int virtual_mem_func() { return 2; }
};

class Base3 : public Base2 {
  public:
    virtual int virtual_mem_func() { return 3; }
};

int foo(Base1 *b1) {
    return  b1->virtual_mem_func();
}

int main() {
    Base1 *b1;
    Base2 *b2;
    Base3 *b3;

    int i,j,k;

    i = foo(b1);
    j = foo(b2);
    k = foo(b3);
    return 0;
}

Symbol Table Contents

File 0 Local Symbols:

  0. ( 0)(   0) interlude.cxx
                           File       Text       symref 113
  1. ( 1)(   0) Base1      Tag        Info       [17] Class(extended file 0,
                                                      index 2)
  2. ( 1)( 0x8) Base1      Block      Info       symref 19
  3. ( 2)(   0) __vptr     Member     Info       [20] Pointer to Array
                                                      [(extended file 0, aux
                                                      3)0-1:64] of Virtual func
                                                      table
  4. ( 2)(   0) Base1::Base1(void)
                           Proc       Info       [35] endref 7, Reference
                                                      Class(extended file 0,
                                                      index 2)
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  5. ( 3)(   0) this       Param      Info       [32] Const Pointer to
                                                      Class(extended file 0,
                                                      index 2)
  6. ( 2)(   0) Base1::Base1(void)
                           End        Info       symref 4
  7. ( 2)(   0) Base1::Base1(const Base1&)
                           Proc       Info       [45] endref 11, Reference
                                                      Class(extended file 0,
                                                      index 2)
  8. ( 3)(   0) this       Param      Info       [32] Const Pointer to
                                                      Class(extended file 0,
                                                      index 2)
  9. ( 3)(   0)            Param      Info       [42] Reference Const
                                                      Class(extended file 0,
                                                      index 2)
 10. ( 2)(   0) Base1::Base1(const Base1&)
                           End        Info       symref 7
 11. ( 2)(   0) Base1::operator =(const Base1&)
                           Proc       Info       [49] endref 15, Reference
                                                      Class(extended file 0,
                                                      index 2)
 12. ( 3)(   0) this       Param      Info       [32] Const Pointer to
                                                      Class(extended file 0,
                                                      index 2)
 13. ( 3)(   0)            Param      Info       [42] Reference Const
                                                      Class(extended file 0,
                                                      index 2)
 14. ( 2)(   0) Base1::operator =(const Base1&)
                           End        Info       symref 11
 15. ( 2)( 0x1) Base1::virtual_mem_func(void)
                           Proc       Info       [53] endref 18, int
 16. ( 3)(   0) this       Param      Info       [32] Const Pointer to
                                                      Class(extended file 0,
                                                      index 2)
 17. ( 2)(   0) Base1::virtual_mem_func(void)
                           End        Info       symref 15
 18. ( 1)(   0) Base1      End        Info       symref 2
 19. ( 1)(   0) Base2      Tag        Info       [55] Class(extended file 0,
                                                      index 20)
 20. ( 1)(0x18) Base2      Block      Info       symref 42
 21. ( 2)(   0) __vptr     Member     Info       [20] Pointer to Array
                                                      [(extended file 0, aux
                                                      3)0-1:64] of Virtual func
                                                      table
 22. ( 2)(0x40) __bptr     Member     Info       [20] Pointer to Array
                                                      [(extended file 0, aux
                                                      3)0-1:64] of Virtual func
                                                      table
 23. ( 2)(   0) Base1      Virtual Base Class
                                      Info       [17] Class(extended file 0,
                                                      index 2)
 24. ( 2)(   0) Base2::Base2(void)
                           Proc       Info       [67] endref 28, Reference
                                                      Class(extended file 0,
                                                      index 20)
 25. ( 3)(   0) this       Param      Info       [64] Const Pointer to
                                                      Class(extended file 0,
                                                      index 20)
 26. ( 3)(   0) <control>  Param      Info       [ 3] int
 27. ( 2)(   0) Base2::Base2(void)
                           End        Info       symref 24
 28. ( 2)(   0) Base2::Base2(const Base2&)
                           Proc       Info       [77] endref 33, Reference
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                                                      Class(extended file 0,
                                                      index 20)
 29. ( 3)(   0) this       Param      Info       [64] Const Pointer to
                                                      Class(extended file 0,
                                                      index 20)
 30. ( 3)(   0) <control>  Param      Info       [ 3] int
 31. ( 3)(   0)            Param      Info       [74] Reference Const
                                                      Class(extended file 0,
                                                      index 20)
 32. ( 2)(   0) Base2::Base2(const Base2&)
                           End        Info       symref 28
 33. ( 2)(   0) Base2::operator =(const Base2&)
                           Proc       Info       [81] endref 38, Reference
                                                      Class(extended file 0,
                                                      index 20)
 34. ( 3)(   0) this       Param      Info       [64] Const Pointer to
                                                      Class(extended file 0,
                                                      index 20)
 35. ( 3)(   0) <control>  Param      Info       [ 3] int
 36. ( 3)(   0)            Param      Info       [74] Reference Const
                                                      Class(extended file 0,
                                                      index 20)
 37. ( 2)(   0) Base2::operator =(const Base2&)
                           End        Info       symref 33
 38. ( 2)( 0x1) Base2::virtual_mem_func(void)
                           Proc       Info       [85] endref 41, int
 39. ( 3)(   0) this       Param      Info       [64] Const Pointer to
                                                      Class(extended file 0,
                                                      index 20)
 40. ( 2)(   0) Base2::virtual_mem_func(void)
                           End        Info       symref 38
 41. ( 1)(   0) Base2      End        Info       symref 20
 42. ( 1)(   0) Base3      Tag        Info       [87] Class(extended file 0,
                                                      index 43)
 43. ( 1)(0x18) Base3      Block      Info       symref 65
 44. ( 2)(   0) __vptr     Member     Info       [20] Pointer to Array
                                                      [(extended file 0, aux
                                                      3)0-1:64] of Virtual func
                                                      table
 45. ( 2)(0x40) __bptr     Member     Info       [20] Pointer to Array
                                                      [(extended file 0, aux
                                                      3)0-1:64] of Virtual func
                                                      table
 46. ( 2)(   0) Base2      Base Class Info       [55] Class(extended file 0,
                                                      index 20)
 47. ( 2)(   0) Base3::Base3(void)
                           Proc       Info       [99] endref 51, Reference
                                                      Class(extended file 0,
                                                      index 43)
 48. ( 3)(   0) this       Param      Info       [96] Const Pointer to
                                                      Class(extended file 0,
                                                      index 43)
 49. ( 3)(   0) <control>  Param      Info       [ 3] int
 50. ( 2)(   0) Base3::Base3(void)
                           End        Info       symref 47
 51. ( 2)(   0) Base3::Base3(const Base3&)
                           Proc       Info       [109] endref 56, Reference
                                                       Class(extended file 0,
                                                       index 43)
 52. ( 3)(   0) this       Param      Info       [96] Const Pointer to
                                                      Class(extended file 0,
                                                      index 43)
 53. ( 3)(   0) <control>  Param      Info       [ 3] int
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 54. ( 3)(   0)            Param      Info       [106] Reference Const
                                                       Class(extended file 0,
                                                       index 43)
 55. ( 2)(   0) Base3::Base3(const Base3&)
                           End        Info       symref 51
 56. ( 2)(   0) Base3::operator =(const Base3&)
                           Proc       Info       [113] endref 61, Reference
                                                       Class(extended file 0,
                                                       index 43)
 57. ( 3)(   0) this       Param      Info       [96] Const Pointer to
                                                      Class(extended file 0,
                                                      index 43)
 58. ( 3)(   0) <control>  Param      Info       [ 3] int
 59. ( 3)(   0)            Param      Info       [106] Reference Const
                                                       Class(extended file 0,
                                                       index 43)
 60. ( 2)(   0) Base3::operator =(const Base3&)
                           End        Info       symref 56
 61. ( 2)( 0x1) Base3::virtual_mem_func(void)
                           Proc       Info       [117] endref 64, int
 62. ( 3)(   0) this       Param      Info       [96] Const Pointer to
                                                      Class(extended file 0,
                                                      index 43)
 63. ( 2)(   0) Base3::virtual_mem_func(void)
                           End        Info       symref 61
 64. ( 1)(   0) Base3      End        Info       symref 43
 65. ( 1)(   0) __INTER__Base3_virtual_mem_func_Base1_Base2_Xv
                           Interlude  Info       thunk(extended file 0, index
                                                       61), proc(extended file
                                                       0, index 104)
 66. ( 1)(   0) __INTER__Base2_virtual_mem_func_Base1_Xv
                           Interlude  Info       thunk(extended file 0, index
                                                       38), proc(extended file
                                                       0, index 108)
 67. ( 1)(0x160) __vtbl_5Base1
                           Static     SData      [126] Const Array [(extended
                                                       file 0, aux 3)0-0:64] of
                                                       Pointer to void
 68. ( 1)(0x168) __vtbl_5Base2
                           Static     SData      [126] Const Array [(extended
                                                       file 0, aux 3)0-0:64] of
                                                       Pointer to void
 69. ( 1)(0x170) __btbl_5Base2
                           Static     SData      [138] Const Array [(extended
                                                       file 0, aux 3)0-0:64] of
                                                       long
 70. ( 1)(0x178) __vtbl_5Base15Base2
                           Static     SData      [126] Const Array [(extended
                                                       file 0, aux 3)0-0:64] of
                                                       Pointer to void
 71. ( 1)(0x180) __vtbl_5Base3
                           Static     SData      [126] Const Array [(extended
                                                       file 0, aux 3)0-0:64] of
                                                       Pointer to void
 72. ( 1)(0x188) __btbl_5Base3
                           Static     SData      [138] Const Array [(extended
                                                 file 0, aux 3)0-0:64] of long
 73. ( 1)(0x190) __vtbl_5Base15Base25Base3
                           Static     SData      [126] Const Array [(extended
                                                       file 0, aux 3)0-0:64] of
                                                       Pointer to void
 74. ( 1)(   0) Base1::virtual_mem_func(void)
                           StaticProc Text       [152] endref 79, int
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 75. ( 2)( 0x1) this       Param      Register   [32] Const Pointer to
                                                      Class(extended file 0,
                                                      index 2)
 76. ( 2)( 0x4)            Block      Text       symref 78
 77. ( 2)( 0x8)            End        Text       symref 76
 78. ( 1)( 0xc) Base1::virtual_mem_func(void)
                           End        Text       symref 74
 79. ( 1)(0x14) Base2::virtual_mem_func(void)
                           StaticProc Text       [154] endref 84, int
 80. ( 2)( 0x1) this       Param      Register   [64] Const Pointer to
                                                      Class(extended file 0,
                                                      index 20)
 81. ( 2)( 0x4)            Block      Text       symref 83
 82. ( 2)( 0x8)            End        Text       symref 81
 83. ( 1)( 0xc) Base2::virtual_mem_func(void)
                           End        Text       symref 79
 84. ( 1)(0x28) Base3::virtual_mem_func(void)
                           StaticProc Text       [156] endref 89, int
 85. ( 2)( 0x1) this       Param      Register   [96] Const Pointer to
                                                      Class(extended file 0,
                                                      index 43)
 86. ( 2)( 0x4)            Block      Text       symref 88
 87. ( 2)( 0x8)            End        Text       symref 86
 88. ( 1)( 0xc) Base3::virtual_mem_func(void)
                           End        Text       symref 84
 89. ( 1)(0x34) foo(Base1*) Proc      Text       [158] endref 94, int
 90. ( 2)( 0x9) b1         Param      Register   [29] Pointer to Class(extended
                                                      file 0, index 2)
 91. ( 2)(0x10)            Block      Text       symref 93
 92. ( 2)(0x28)            End        Text       symref 91
 93. ( 1)(0x38) foo(Base1*) End       Text       symref 89
 94. ( 1)(0x6c) main       Proc       Text       [160] endref 104, int
 95. ( 2)( 0xc)            Block      Text       symref 103
 96. ( 3)(-8)   b1         Local      Abs        [29] Pointer to Class(extended
                                                      file 0, index 2)
 97. ( 3)(-16)  b2         Local      Abs        [61] Pointer to Class(extended
                                                      file 0, index 20)
 98. ( 3)( 0x9) b3         Local      Register   [93] Pointer to Class(extended
                                                      file 0, index 43)
 99. ( 3)(-24)  i          Local      Abs        [ 3] int
100. ( 3)(-28)  j          Local      Abs        [ 3] int
101. ( 3)(-32)  k          Local      Abs        [ 3] int
102. ( 2)(0x70)            End        Text       symref 95
103. ( 1)(0x80) main       End        Text       symref 94
104. ( 1)(0x20) __INTER__Base3_virtual_mem_func_Base1_Base2_Xv
                           StaticProc Text       [162] endref 108, btNil
105. ( 2)(   0)            Block      Text       symref 107
106. ( 2)(0x28)            End        Text       symref 105
107. ( 1)( 0x8) __INTER__Base3_virtual_mem_func_Base1_Base2_Xv
                           End        Text       symref 104
108. ( 1)( 0xc) __INTER__Base2_virtual_mem_func_Base1_Xv
                           StaticProc Text       [164] endref 112, btNil
109. ( 2)(   0)            Block      Text       symref 111
110. ( 2)(0x14)            End        Text       symref 109
111. ( 1)( 0x8) __INTER__Base2_virtual_mem_func_Base1_Xv
                           End        Text       symref 108
112. ( 0)(   0) interlude.cxx
                           End        Text       symref 0

9.2.3. Namespace Definitions and Uses

See Section 5.3.6.4 for related information.
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Source Listing

ns1.h:

namespace ns1 {
    class Cobj {};
    extern int i1;
}

ns2.h:

namespace ns1 {
    int x1(void);
}

ns.C:

#include "ns1.h"
#include "ns2.h"

namespace ns1 {
    extern int part3;
}

int ns1::i1 = 1000;
int ns1::part3 = 3;
int ns1::x1(void) {
    using namespace ns1;
    return i1*10;
}

Symbol Table Contents

File 0 Local Symbols:

  0. ( 0)(   0) ns.C          File      Text    symref 7
  1. ( 1)(   0) ns1::x1(void) Proc      Text    [4] endref 6, int
  2. ( 2)(   0)               Using     Info    [6] symref(file 1, index 1)
  3. ( 2)( 0x8)               Block     Text    symref 5
  4. ( 2)(0x14)               End       Text    symref 3
  5. ( 1)(0x18) ns1::x1(void) End       Text    symref 1
  6. ( 0)(   0) ns.C          End       Text    symref 0

File 1 Local Symbols:

  0. ( 0)(   0) ns1.h         File      Text    symref 8
  1. ( 1)(   0) ns1           Namespace Info    symref 7
  2. ( 2)(   0) ns1::x1(void) Proc      Info    [2] endref 4, int
  3. ( 2)(   0) ns1::x1(void) End       Info    symref 2
  4. ( 2)(   0) i1            Member    Info    [4] int
  5. ( 2)(   0) part3         Member    Info    [4] int
  6. ( 1)(   0) ns1           End       Info    symref 1
  7. ( 0)(   0) ns1.h         End       Text    symref 0

Externals Table:

0. (file 0)(0x50) ns1::i1       Global    SData   [3] int
1. (file 0)(0x58) ns1::part3    Global    Sdata   [3] int
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2. (file 0)(   0) ns1::x1(void) Proc      Text    symref 1

9.2.4. Unnamed Namespaces

See Section 5.3.6.4.3 for related information.

Source Listing

uns.C:

namespace {
    int usv1;
    int usv2;
}

int privat(void) {
    return usv1 + usv2;
}

Symbol Table Contents

File 0 Local Symbols:

  0. ( 0)(   0) uns.C           File       Info    symref 13
  1. ( 1)(   0)                 Namespace  Info    symref 5
  2. ( 2)(   0) usv1            Member     Info    [3] int
  3. ( 2)(   0) usv2            Member     Info    [3] int
  4. ( 1)(   0)                 End        Info    symref 1
  5. ( 1)(   0)                 Using      Info    [4] symref(file 0, index 1)
  6. ( 1)(0x50) __unnamed::usv1 Static     SBss    [3] int
  7. ( 1)(0x54) __unnamed::usv2 Static     SBss    [3] int
  8. ( 1)(   0) privat(void)    Proc       Text    [5] endref 12, int
  9. ( 2)( 0x8)                 Block      Text    symref 11
 10. ( 2)(0x1c)                 End        Text    symref 9
 11. ( 1)(0x20)                 End        Text    symref 8
 12. ( 0)(   0)                 End        Text    symref 0

9.2.5. Namespace Aliases

See Section 5.3.6.4.2 for related information.

Source Listing

alias.C:

namespace long_namespace_name {
    extern int nmem;
}

int get_nmem(void) {
    namespace nknm = long_namespace_name;
    namespace nknm2 = nknm;
    return nknm::nmem;
}
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Symbol Table Contents

File 0 Local Symbols

  0. ( 0)(   0) alias.C             File      Text   symref 11
  1. ( 1)(   0) long_namespace_name Namespace Info   symref 4
  2. ( 2)(   0) nmem                Member    Info   [3] int
  3. ( 1)(   0) long_namespace_name End       Info   symref 1
  4. ( 1)(   0) get_nmem(void)      Proc      Text   [4] endref 10, int
  5. ( 2)( 0x8)                     Block     Text   symref 9
  6  ( 2)(   0) nknm                Alias     Info   [5] symref(file 0,index 1)
  7  ( 2)(   0) nknm2               Alias     Info   [6] symref(file 0,index 6)
  8. ( 2)(0x10)                     End       Text   symref 5
  9. ( 1)(0x14) get_nmem(void)      End       Text   symref 4
 10. ( 0)(   0) alias.C             End       Text   symref 0

Externals Table

0. (file 0)(0x4) long_namespace_name::nmem Global   Undefined  [3]int
1. (file 0)(  0) get_nmem(void)            Proc     Text       symref 4



310

9.2.6. Exception-Handling

See Section 3.3.8 for related information.

Source Listing

#include <iostream.h>

class Vector {
int *p;
int sz;

  public:
enum { max=1000 };

Vector(int);

class Range { };
class Size { };

int operator[](int i);

}; // Vector

Vector::Vector(int i) {
if (i>max) throw Size();
p=new int[i];
if (p) sz=i;
else sz=0;

}

int Vector::operator[](int i) {
if (0<=i && i<sz) return p[i];
throw Range();

}

void f() {
int i;

  try {
cout<<"size?";
cin>>i;
Vector v(i);
cout<<v[i]<<"\n";

}

catch (Vector::Range) {
cout<< "bad news; outta here...\n";

} 

catch (Vector::Size) {
cout<< "can't initialize to that size...\n";

}

} // f
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main() {

f();
}

Symbol Table Contents

File 0 Local Symbols:

  0. ( 0)(   0) multiexc.cxx File     Text       symref 83
  1. ( 1)(   0) Vector     Tag        Info       [16] Class(extended file 0,
                                                            index 2)
  2. ( 1)(0x10) Vector     Block      Info       symref 40
  3. ( 2)(   0) <generated_name_0005>
                           Tag        Info       [19] enum(extended file 0,
                                                      index 4)
  4. ( 2)(   0) <generated_name_0005>
                           Block      Info       symref 7
  5. ( 3)(0x3e8) max       Member     Info       [ 2] btNil
  6. ( 2)(   0) <generated_name_0005> End        Info       symref 4
  7. ( 2)(   0) Range      Tag        Info       [22] Class(extended file 0,
                                                      index 8)
  8. ( 2)( 0x1) Range      Block      Info       symref 14
  9. ( 3)(   0) Vector::Range::operator =(const Vector::Range&)
                           Proc       Info       [40] endref 13, Reference
                                                      Class(extended file 0,
                                                      index 8)
 10. ( 4)(   0) this       Param      Info       [31] Const Pointer to
                                                      Class(extended file 0,
                                                      index 8)
 11. ( 4)(   0)            Param      Info       [37] Reference Const
                                                      Class(extended file 0,
                                                      index 8)
 12. ( 3)(   0) Vector::Range::operator =(const Vector::Range&)
                           End        Info       symref 9
 13. ( 2)(   0) Range      End        Info       symref 8
 14. ( 2)(   0) Size       Tag        Info       [44] Class(extended file 0,
                                                      index 15)
 15. ( 2)( 0x1) Size       Block      Info       symref 21
 16. ( 3)(   0) Vector::Size::operator =(const Vector::Size&)
                           Proc       Info       [62] endref 20, Reference
                                                      Class(extended file 0,
                                                      index 15)
 17. ( 4)(   0) this       Param      Info       [53] Const Pointer to
                                                      Class(extended file 0,
                                                      index 15)
 18. ( 4)(   0)            Param      Info       [59] Reference Const
                                                      Class(extended file 0,
                                                      index 15)
 19. ( 3)(   0) Vector::Size::operator =(const Vector::Size&)
                           End        Info       symref 16
 20. ( 2)(   0) Size       End        Info       symref 15
 21. ( 2)(   0) p          Member     Info       [66] Pointer to int
 22. ( 2)(0x40) sz         Member     Info       [ 3] int
 23. ( 2)(   0) Vector::Vector(int)
                           Proc       Info       [76] endref 27, Reference
                                                      Class(extended file 0,
                                                      index 2)
 24. ( 3)(   0) this       Param      Info       [73] Const Pointer to
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                                                      Class(extended file 0,
                                                      index 2)
 25. ( 3)(   0) i          Param      Info       [ 3] int
 26. ( 2)(   0) Vector::Vector(int)
                End        Info       symref 23
 27. ( 2)(   0) Vector::Vector(const Vector&)
                Proc       Info       [86] endref 31, Reference Class(extended
                                                      file 0, index 2)
 28. ( 3)(   0) this       Param      Info       [73] Const Pointer to
                                                      Class(extended file 0,
                                                      index 2)
 29. ( 3)(   0)            Param      Info       [83] Reference Const
                                                      Class(extended file 0,
                                                      index 2)
 30. ( 2)(   0) Vector::Vector(const Vector&)
                           End        Info       symref 27
 31. ( 2)(   0) Vector::operator [](int)
                           Proc       Info       [90] endref 35, int
 32. ( 3)(   0) this       Param      Info       [73] Const Pointer to
                                                      Class(extended file 0,
                                                      index 2)
 33. ( 3)(   0) i          Param      Info       [ 3] int
 34. ( 2)(   0) Vector::operator [](int)
                           End        Info       symref 31
 35. ( 2)(   0) Vector::operator =(const Vector&)
                           Proc       Info       [92] endref 39, Reference
                                                      Class(extended file 0,
                                                      index 2)
 36. ( 3)(   0) this       Param      Info       [73] Const Pointer to
                                                      Class(extended file 0,
                                                      index 2)
 37. ( 3)(   0)            Param      Info       [83] Reference Const
                                                      Class(extended file 0,
                                                      index 2)
 38. ( 2)(   0) Vector::operator =(const Vector&)
                           End        Info       symref 35
 39. ( 1)(   0) Vector     End        Info       symref 2
 40. ( 1)(   0) __throw_Q16Vector4Size
                           Tag        Info       [96] struct(extended file 0,
                                                      index 41)
 41. ( 1)(0x10) __throw_Q16Vector4Size
                           Block      Info       symref 45
 42. ( 2)(   0) type_signature
                           Member     Info       [99] Pointer to char
 43. ( 2)(0x40) thunk      Member     Info       [99] Pointer to char
 44. ( 1)(   0) __throw_Q16Vector4Size
                           End        Info       symref 41
 45. ( 1)(0x3c0) __throw_Q16Vector4Size
                           Static     Data       [176] Array [(extended file 7,
                                                       aux 9)0-1:128] of
                                                       struct(extended file 0,
                                                       index 41)
 46. ( 1)(0x3a0) __throw_Q16Vector5Range
                           Static     Data       [176] Array [(extended file 7,
                                                       aux 9)0-1:128] of
                                                       struct(extended file 0,
                                                       index 41)
 47. ( 1)(   0) Vector::Vector(int)
                           Proc       Text       [184] endref 57, Reference
                                                       Class(extended file 0,
                                                       index 2)
 48. ( 2)( 0xa) this       Param      Register   [73] Const Pointer to
                                                      Class(extended file 0,
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                                                      index 2)
 49. ( 2)( 0x9) i          Param      Register   [ 3] int
 50. ( 2)(0x20)            Block      Text       symref 56
 51. ( 3)(-8)   __t8       Local      Abs        [44] Class(extended file 0,
                                                      index 15)
 52. ( 3)(0x3c0) __throw_Q16Vector4Size
                           Static     Data       indexNil
 53. ( 3)(-16)  __t9       Local      Abs        [10] unsigned long
 54. ( 3)(-24)  __t10      Local      Abs        [194] Pointer to Array
                                                       [(extended file 7, aux
                                                       9)0-0:32] of int
 55. ( 2)(0x74)            End        Text       symref 50
 56. ( 1)(0xb4) Vector::Vector(int)
                           End        Text       symref 47
 57. ( 1)(0xb4) Vector::operator [](int)
                           Proc       Text       [200] endref 65, int
 58. ( 2)(0x28) this       Param      Abs        [73] Const Pointer to
                                                      Class(extended file 0,
                                                      index 2)
 59. ( 2)( 0x9) i          Param      Register   [ 3] int
 60. ( 2)(0x1c)            Block      Text       symref 64
 61. ( 3)(-16)  __t11      Local      Abs        [22] Class(extended file 0,
                                                      index 8)
 62. ( 3)(0x3a0) __throw_Q16Vector5Range
                           Static     Data       indexNil
 63. ( 2)(0x44)            End        Text       symref 60
 64. ( 1)(0x7c) Vector::operator [](int)
                           End        Text       symref 57
 65. ( 1)(0x130) f(void)   Proc       Text       [202] endref 78, void
 66. ( 2)(0x1c)            Block      Text       symref 77
 67. ( 3)(-32)  i          Local      Abs        [ 3] int
 68. ( 3)(-48) __current_try_block_decl
                           Local      Abs        indexNil
 69. ( 3)(0x28)            Block      Text       symref 72
 70. ( 4)(-24)  v          Local      Abs        [16] Class(extended file 0,
                                                      index 2)
 71. ( 3)(0xab)            End        Text       symref 69
 72. ( 3)(0xac)            Block      Text       symref 74
 73. ( 3)(0xe3)            End        Text       symref 72
 74. ( 3)(0xe4)            Block      Text       symref 76
 75. ( 3)(0x113)           End        Text       symref 74
 76. ( 2)(0x11c)           End        Text       symref 66
 77. ( 1)(0x130) f(void)   End        Text       symref 65
 78. ( 1)(0x260) main      Proc       Text       [204] endref 82, int
 79. ( 2)(0x10)            Block      Text       symref 81
 80. ( 2)(0x18)            End        Text       symref 79
 81. ( 1)(0x24) main       End        Text       symref 78
 82. ( 0)(   0) multiexc.cxx End      Text       symref 0
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9.3. Fortran

9.3.1. Common Data

See Section 5.3.6.6 for related information.

Source Listing

comm.f:

C  main program
INTEGER IND, CLASS(10)
REAL MARKS(50)
COMMON CLASS,MARKS,IND
CALL EVAL(5)
STOP
END

C
SUBROUTINE EVAL(PERF)
INTEGER PERF,JOB(10),PAR
REAL GRADES(50)
COMMON JOB,GRADES,PAR
RETURN
END

Symbol Table Contents

File 0 Local Symbols:

  0. ( 0)(   0) comm.f     File       Text       symref 13
  1. ( 1)(   0) comm$main_ Proc       Text       [25] endref 6, btNil
  2. ( 2)(0x10)            Block      Text       symref 5
  3. ( 3)(   0) _BLNK__    Static     Common     [39] struct(extended file 1,
                                                      index 1)
  4. ( 2)(0x44)            End        Text       symref 2
  5. ( 1)(0x44) comm$main_  End        Text      symref 1
  6. ( 1)(0x44) eval_      Proc       Text       [42] endref 12, btNil
  7. ( 2)(   0) PERF       Param      VarRegister [11] 32-bit long
  8. ( 2)( 0x4)            Block      Text       symref 11
  9. ( 3)(   0) _BLNK__    Static     Common     [56] struct(extended file 2,
                                                      index 1)
 10. ( 2)( 0x4)            End        Text       symref 8
 11. ( 1)( 0x8) eval_      End        Text       symref 6
 12. ( 0)(   0) comm.f     End        Text       symref 0

File 1 Local Symbols:

  0. ( 0)(   0) _BLNK__    File       Text       symref 7
  1. ( 1)(0xf4) _BLNK__    Block      Common     symref 6
  2. ( 2)(0x780) IND       Member     Info       [ 5] 32-bit long
  3. ( 2)(   0) CLASS      Member     Info       [ 6] Array [(extended file 0,
                                                      aux 11)1-10:4] of 32-bit
                                                      long
  4. ( 2)(0x140) MARKS     Member     Info       [12] Array [(extended file 0,
                                                      aux 11)1-50:4] of float
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  5. ( 1)(   0)            End        Common     symref 1
  6. ( 0)(   0) _BLNK__    End        Text       symref 0

File 2 Local Symbols:

  0. ( 0)(   0) _BLNK__    File       Text       symref 7
  1. ( 1)(0xf4) _BLNK__    Block      Common     symref 6
  2. ( 2)(   0) JOB        Member     Info       [ 5] Array [(extended file 0,
                                                      aux 11)1-10:4] of 32-bit
                                                      long
  3. ( 2)(0x780) PAR        Member     Info       [11] 32-bit long
  4. ( 2)(0x140) GRADES     Member     Info       [12] Array [(extended file 0,
                                                       aux 11)1-50:4] of float
  5. ( 1)(   0)            End        Common     symref 1
  6. ( 0)(   0) _BLNK__    End        Text       symref 0

Externals table:
0. (file  0) (   0) MAIN__     Proc       Text       symref 1
1. (file  0) (0xf4) _BLNK__    Global     Common     indexNil
2. (file  0) (   0) comm$main_ Proc       Text       symref 1
3. (file  0) (0x44) eval_      Proc       Text       symref 6
4. (file  0) (   0) for_stop   Proc       Undefined  indexNil
5. (file  0) (   0) for_set_reentrancy
                               Proc       Undefined  indexNil
6. (file  0) (   0) _fpdata    Global     Undefined  indexNil

***FILE DESCRIPTOR TABLE***

  filename             address            vstamp -g sex      lang flags
       cbLine  ---------------iBase/count----------------------------------
     lnOffset     sym      line      pd    string     opt     aux   rfd
comm.o:
  comm.f               0x0000000000000000 0x0000  0  el   Fortran readin
            0       0         0       0         0       0       0     0
            5      13        20       2        44       0      59     0
  _BLNK__              0x0000000000000000 0x0000  0  el   Fortran merge
            0      13         0       2        44       0      59     0
            0       7         0       0        33       0      18     0
  _BLNK__              0x0000000000000000 0x0000  0  el   Fortran merge
            0      20         0       2        77       0      77     0
            0       7         0       0        32       0      18     0
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9.3.2. Alternate Entry Points

See Section 5.3.6.7 for related information.

Source Listing

aent.f:

      program entryp

      print *, "In entryp, the main routine"
      call anentry()
      call anentry1(2,3)
      call anentry1a(2,3,4,5,6,7)
      call asubr()
      print *, "exiting..."

      end

      subroutine asubr
      real*4 areal /1.2345E-6/
      print *, "In asubr"
      return

      entry anentry
      print *, "In anentry"
      return

      entry anentry1(a,b,c,d,e,f)
      a = 1
      b = 2
      print *, "In anentry1"
      return

      include 'entrya.h'

      entry anentry2(b,a)
      print *, "In anentry2"
                  return

      entry anentry3
      include 'entryb.h'
                return

      end

Symbol Table Contents

File 0 Local Symbols:

  0. ( 0)(   0) aent.f     File       Text       symref 30
  1. ( 1)(   0) entryp_    Proc       Text       [ 4] endref 5, btNil
  2. ( 2)(0x14)            Block      Text       symref 4
  3. ( 2)(0xf8)            End        Text       symref 2



317

  4. ( 1)(0x108) entryp_   End        Text       symref 1
  5. ( 1)(0x108) asubr_    Proc       Text       [ 6] endref 29, btNil
  6. ( 2)(0x20)            Block      Text       symref 28
  7. ( 3)(0x610) AREAL     Static     Data       [ 8] float
  8. ( 3)(0x17c) anentry_  Proc       Text       [ 9] endref -1, btNil
  9. ( 4)(0x1f0) anentry1_ Proc       Text       [11] endref -1, btNil
 10. ( 5)( 0xa) A          Param      VarRegister [ 8] float
 11. ( 5)( 0x9) B          Param      VarRegister [ 8] float
 12. ( 5)(-144) C          Param      Var        [ 8] float
 13. ( 5)(-152) D          Param      Var        [ 8] float
 14. ( 5)(-160) E          Param      Var        [ 8] float
 15. ( 5)(-168) F          Param      Var        [ 8] float
 16. ( 5)(0x290) anentry1a_ Proc      Text       [13] endref -1, btNil
 17. ( 6)( 0xa) A          Param      VarRegister [ 8] float
 18. ( 6)( 0x9) B          Param      VarRegister [ 8] float
 19. ( 6)(-144) C          Param      Var        [ 8] float
 20. ( 6)(-152) D          Param      Var        [ 8] float
 21. ( 6)(-160) E          Param      Var        [ 8] float
 22. ( 6)(-168) F          Param      Var        [ 8] float
 23. ( 6)(0x330) anentry2_ Proc       Text       [15] endref -1, btNil
 24. ( 7)( 0x9) B          Param      VarRegister [ 8] float
 25. ( 7)( 0xa) A          Param      VarRegister [ 8] float
 26. ( 7)(0x3ac) anentry3_ Proc       Text       [17] endref -1, btNil
 27. ( 7)(0x384)           End        Text       symref 6
 28. ( 6)(0x3a0) asubr_    End        Text       symref 5
 29. ( 5)(   0) aent.f     End        Text       symref 0

Externals table:
0. (file 0) (   0) MAIN__      Proc       Text       symref 1
1. (file 0) (   0) entryp_     Proc       Text       symref 1
2. (file 0) (0x108) asubr_     Proc       Text       symref 5
3. (file 0) (0x290) anentry1a_ Proc       Text       symref 16
4. (file 0) (0x1f0) anentry1_  Proc       Text       symref 9
5. (file 0) (0x17c) anentry_   Proc       Text       symref 8
6. (file 0) (   0) for_set_reentrancy
                               Proc       Undefined  indexNil
7. (file 0) (   0) for_write_seq_lis
                               Proc       Undefined  indexNil
8. (file 0) (0x330) anentry2_  Proc       Text       symref 23
9. (file 0) (0x3ac) anentry3_  Proc       Text       symref 26
10.(file 0) (   0) _fpdata     Global     Undefined  indexNil

***PROCEDURE DESCRIPTOR TABLE***

    name      prof rfrm  isym iline  iopt   regmask  regoff  fpoff fp
   address    guse gpro lnOff lnLow lnHigh fregmask  frgoff lcloff pc

aent.o:
  aent.f           [0 for 7]
    entryp_     0   0      1     0    -1  0x04000200   -112    112 30
      0x000     1   8      0     1    10  0x00000000      0      0 26
    asubr_      0   0      5    66    -1  0x04001e00   -256    256 30
      0x108     1   8      8    12    37  0x00000000      0      0 26
    anentry_    0   0      8    95    -1  0x04001e00   -256    256 30
      0x17c     1   8     11    17    -1  0x00000000      0      0 26
    anentry1_   0   0      9   124    -1  0x04001e00   -256    256 30
      0x1f0     1   8     14    21    -1  0x00000000      0      0 26
    anentry1a_  0   0     16   164    -1  0x04001e00   -256    256 30
      0x290     1   8     20     1    -1  0x00000000      0      0 26
    anentry2_   0   0     23   204    -1  0x04001e00   -256    256 30
      0x330     1   8     25    29    -1  0x00000000      0      0 26
    anentry3_   0   0     26   235    -1  0x04001e00   -256    256 30
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      0x3ac     1   8     28    33    -1  0x00000000      0      0 26
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9.3.3. Array Descriptors

See Section 5.3.8.9 for related information.

Source Listing

arraydescs.f:

! -*- Fortran -*-

        integer, allocatable, dimension(:,:) :: alloc_int_2d
        real, pointer, dimension(:) :: pointer_real_1d

        allocate(alloc_int_2d(10,20))

        call zowie(alloc_int_2d)

end

contains

        subroutine zowie(assumed_int_2d)
         integer, dimension(:,:) :: assumed_int_2d
         print *, assumed_int_2d
         return
        end subroutine

Symbol Table Contents

File 0 Local Symbols:

  0. ( 0)(   0) arraydescs.f File     Text       symref 43
  1. ( 1)(   0) main$arraydescs_
                           Proc       Text       [ 4] endref 26, btNil
  2. ( 2)(0x40) $f90$f90_array_desc
                           Block      Info       symref 10
  3. ( 3)(   0) dim        Member     Info       [ 6] 8-bit int
  4. ( 3)(0x40) element_length Member     Info       [ 7] 32-bit long
  5. ( 3)(0x80) ptr        Member     Info       [ 9] Pointer to float
  6. ( 3)(0x140) ies1      Member     Info       [10] 32-bit long
  7. ( 3)(0x180) ub1       Member     Info       [11] 32-bit long
  8. ( 3)(0x1c0) lb1       Member     Info       [12] 32-bit long
  9. ( 2)(   0) $f90$f90_array_desc
                           End        Info       symref 2
 10. ( 2)(0x58) $f90$f90_array_desc
                           Block      Info       symref 21
 11. ( 3)(   0) dim        Member     Info       [16] 8-bit int
 12. ( 3)(0x40) element_length
                           Member     Info       [17] 32-bit long
 13. ( 3)(0x80) ptr        Member     Info       [19] Pointer to 32-bit long
 14. ( 3)(0x140) ies1      Member     Info       [20] 32-bit long
 15. ( 3)(0x180) ub1       Member     Info       [21] 32-bit long
 16. ( 3)(0x1c0) lb1       Member     Info       [22] 32-bit long
 17. ( 3)(0x200) ies2      Member     Info       [23] 32-bit long
 18. ( 3)(0x240) ub2       Member     Info       [24] 32-bit long
 19. ( 3)(0x280) lb2       Member     Info       [25] 32-bit long
 20. ( 2)(   0) $f90$f90_array_desc
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                           End        Info       symref 10
 21. ( 2)(0x14)            Block      Text       symref 25
 22. ( 3)(0x450) POINTER_REAL_1D
                           Static     Bss        [13] struct(extended file 0,
                                                      index 2)
 23. ( 3)(0x3c0) ALLOC_INT_2D
                           Static     Data       [26] struct(extended file 0,
                                                      index 10)
 24. ( 2)(0x160)            End        Text       symref 21
 25. ( 1)(0x170) main$arraydescs_
                            End        Text       symref 1
 26. ( 1)(0x170) zowie_     Proc       Text       [29] endref 42, btNil
 27. ( 2)(0x58) $f90$f90_array_desc
                            Block      Info       symref 38
 28. ( 3)(   0) dim         Member     Info       [31] 8-bit int
 29. ( 3)(0x40) element_length
                            Member     Info       [32] 32-bit long
 30. ( 3)(0x80) ptr         Member     Info       [34] Pointer to 32-bit long
 31. ( 3)(0x140) ies1       Member     Info       [35] 32-bit long
 32. ( 3)(0x180) ub1        Member     Info       [36] 32-bit long
 33. ( 3)(0x1c0) lb1        Member     Info       [37] 32-bit long
 34. ( 3)(0x200) ies2       Member     Info       [38] 32-bit long
 35. ( 3)(0x240) ub2        Member     Info       [39] 32-bit long
 36. ( 3)(0x280) lb2        Member     Info       [40] 32-bit long
 37. ( 2)(   0) $f90$f90_array_desc
                            End        Info       symref 27
 38. ( 2)( 0x9) ASSUMED_INT_2D
                            Param      VarRegister [41] struct(extended file 0,
                                                        index 27)
 39. ( 2)(0x34)             Block      Text       symref 41
 40. ( 2)(0x1f4)            End        Text       symref 39
 41. ( 1)(0x220) zowie_     End        Text       symref 26
 42. ( 0)(   0) arraydescs.f End       Text       symref 0
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9.4. Pascal

9.4.1. Sets

See Section 5.3.8.13 for related information.

Source Listing

program sets(input,output);

type digitset=set of 0..9;

var odds,evens:digitset;

begin

  odds:=[1,3,5,7,9];
  evens:=[0,2,4,6,8];

end.

Symbol Table Contents

File 0 Local Symbols:

  0. ( 0)(   0) set.p      File       Text       symref 10
  1. ( 1)(0x50) $dat       Static     SBss       indexNil
  2. ( 1)(   0) main       Proc       Text       [ 8] endref 9, btNil
  3. ( 2)( 0x4)            Block      Text       symref 8
  4. ( 3)(   0) digitset   Typdef     Info       [16] set of(extended file 0,
                                                      index 10)
  5. ( 3)(-8)   odds       Local      Abs        [16] set of(extended file 0,
                                                      index 10)
  6. ( 3)(-16)  evens      Local      Abs        [16] set of(extended file 0,
                                                      index 10)
  7. ( 2)(0x1c)            End        Text       symref 3
  8. ( 1)(0x24) main       End        Text       symref 2
  9. ( 0)(   0) set.p      End        Text       symref 0
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9.4.2. Subranges

See Section 5.3.8.12 for related information.

Source Listing

subrange.p:

program years(input,output);

type century=0..99;

var year:century;

begin

readln(year);

end.

Symbol Table Contents

File 0 Local Symbols:

  0. ( 0)(   0) subrange.p File       Text       symref 9
  1. ( 1)(0xc0) $dat       Static     SBss       indexNil
  2. ( 1)(   0) main       Proc       Text       [ 8] endref 8, btNil
  3. ( 2)(0x10)            Block      Text       symref 7
  4. ( 3)(   0) century    Typdef     Info       [10] range0..99 of(extended
                                                      file 0, index 2): 8
  5. ( 3)(-8)   year       Local      Abs        [10] range0..99 of(extended
                                                      file 0, index 2): 8
  6. ( 2)(0x68)            End        Text       symref 3
  7. ( 1)(0x74) main       End        Text       symref 2
  8. ( 0)(   0) subrange.p End        Text       symref 0
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9.4.3. Variant Records

See Section 5.3.8.11 for related information.

Source Listing

variant.p:

program variant(input,output);

type    employeetype=(h,s,m);
employeerecord=record

id:integer;
case status: employeetype of
  h: (rate:real;

    hours:integer;);
s: (salary:real);
m: (profit:real);

end; { record }

var employees:array[1..100] of employeerecord;

begin

employees[1].id:=1;
employees[1].profit:=0.06;

end.

Symbol Table Contents

File 0 Local Symbols

 0. (0)(   0) variant.p  File       Text       symref 28
 1. (1)(   0) VARIANT    StaticProc Text       [2] endref 27, btNil
 2. (2)(   0) EMPLOYEETYPE
                         Block      Info       symref 7
 3. (3)(   0) H          Member     Info       [0] btNil
 4. (3)( 0x1) S          Member     Info       [0] btNil
 5. (3)( 0x2) M          Member     Info       [0] btNil
 6. (2)(   0) EMPLOYEETYPE
                         End        Info       symref 2
 7  (2)(0x10) EMPLOYEERECORD
                         Block      Info       symref 23
 8  (3)(   0) ID         Member     Info       [1] int
 9  (3)(0x20) STATUS     Member     Info       [5] enum(extended file 1, index
                                                   2)
10. (3)( 0x9)            Block      Variant    symref 22
11. (4)( 0xc)            Block      Info       symref 15
12. (5)(0x40) RATE       Member     Info       [11] float
13. (5)(0x60) HOURS      Member     Info       [1] int
14  (4)(   0)            End        Info       symref 11
15. (4)(0x11)            Block      Info       symref 18
16. (5)(0x40) SALARY     Member     Info       [11] float
17. (4)(   0)            End        Info       symref 15



324

18. (4)(0x16)            Block      Info       symref 21
19. (5)(0x40) PROFIT     Member     Info       [11] float
20. (4)(   0)            End        Info       symref 18
21. (3)( 0x9)            End        Variant    symref 10
22. (2)(   0) EMPLOYEERECORD
                         End        Info       symref 7
23. (2)(0x18)            Block      Text       symref 26
24. (3)(-1600) EMPLOYEES Local      Abs        [32] Array [(extended file 1,
                                                    aux 27)1-100:128] of struct
                                                    (extended file 1, index 7)
25. (2)(0x30)            End        Text       symref 23
26. (1)(0x40) VARIANT    End        Text       symref 1
27. (0)(   0) variant.p  End        Text       symref 0
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