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Outline

• Israel’s groundbreaking 1967 theorem - the static vacuum case.

• Issues raised by Israel’s theorem.

• How these issues have been dealt with:

(a) sketch of developments by decades, 1970’s, 1980’s, 1990’s- 2000’s,

(b) selected topics explored in more detail. Fermionic fields are not
discussed.

• The current status of the static/stationary a.f. vacuum and electrovac
results in four dimensions.

• Caveat: ”As far as the laws of mathematics refer to reality, they are
not certain; and as far as they are certain, they do not refer to reality”
- Albert Einstein.
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Israel’s first 1967 theorem - the static vacuum problem
Event Horizons in Static Vacuum Space-Times (W. Israel Phys. Rev. 164,

1776, 1967)

This dealt with a four dimensional static space-time satisfying Einstein’s
vacuum field equations,

Rαβ = 0.

The space-time is static, i.e. it admits a time-like hypersurface orthogonal
Killing vector field, Kα,

KαKα < 0, K[α∇βKγ] = 0,

and an adapted coordinate system (t, xa), such that

ds2 = −V 2dt2 + gabdxadxb,

Kα = (1, 0, 0, 0); V,t = gab,t = 0.
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Israel’s assumptions in his 67 paper:
In a static space-time let Σ be any spatial hypersurface t=const., maxi-

mally consistent with KαKα < 0. We consider the class of static fields such
that the following conditions are satisfied on Σ.

(a) Σ is regular, empty, non-compact and ”asymptotically Euclidean”,
i.e. the metric (in suitable coordinates) has the asymptotic form

gab = δab + O(r−1), gab,c = O(r−2),

V = 1−mr−1 + η; m const.; η = O(r−2),

η,a = O(r−3), η,ab = O(r−4); as r = (δabx
axb)1/2 →∞.

(b) The equipotential surfaces in Σ, V =const.> 0, are regular, simply
connected closed 2-spaces.

(c) The invariant (4)Rαβγδ .
(4)Rαβγδ formed from the four dimensional Rie-

mann tensor is bounded on Σ.
(d) If V has vanishing lower bound on Σ, the intrinsic geometry (char-

acterized by (2)R) of the 2-spaces V = c approaches a limit as c → 0+

corresponding to a 2-space of finite area.

3



Israel’s 67 Theorem:
The only static space-time satisfying (a), (b), (c) and (d) is
Schwarzschild’s spherically symmetric vacuum solution.

ds2 = −(1− 2mr−1)dt2 + (1− 2mr−1)−1dr2 + r2dΩ2,

2m < r < ∞.

(electrovac extension by Israel, 68)
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Issues raised by Israel’s theorem
i. The equipotential condition (b).
ii. The assumption of spherical topology of the two dimensional surface

of the black hole.
iii. The assumption that the black hole horizon had only one connected

component.
iv. The effect of the inclusion of matter fields and/or a cosmological

constant.
v. The corresponding situation for stationary and rotating black holes.
vi. The relationship between the ”reduced Riemannian” problem, the

Lorentzian 4- geometry & the horizon.
vii. The role of the dimension of space-time.
viii. The limits of uniqueness (and stability).
ix. The effect of changing the field equations.
x. Sharpness, rigour, differentiability, analyticity.

5



• 1970’s : Laying the foundations

• Assumption (b) on the equipotential surfaces in Israel’s theorem was
removed & the geometrical structure of the proof, in particular the
significance of the conformal 3-geometry, was elucidated.

(Muller Zum Hagen, Robinson & Seifert, 73, Israel’s static electrovac theo-

rem also extended, 74.)

• The non-existence, in the axially symmetric, static vacuum case, of
equilibrium configurations of more than one black hole (Muller Zum

Hagen & Seifert, 73 ) and of black holes and massive bodies which do
not surround or partially surround a black hole were demonstrated.
(Gibbons, 74)

[Investigation of Weyl metrics corresponding to axially symmetric static
black holes with external bodies were continued later. (e.g. Geroch &

Hartle, 82).]

• The existence of static, charged multi-black hole systems was noted.

(Hartle &Hawking: the Majumdar - Papapetrou solutions, 72 ).

Their uniqueness in the axially symmetric case was argued. (Gibbons,

80).

• The detailed investigation of the existence and uniqueness of black holes
with scalar fields was initiated.

(static - Chase, 70; Beckenstein, 72, 74, 75; Hawking 72).
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1970’s: laying the foundations continued

• Foundations for future investigations were established. In a seminal
paper published in 1972 Hawking included basic global results for four
dimensional, asymptotically flat, stationary black hole systems. In this
paper Hawking showed, that under certain conditions the topology of
two dimensional cross sections of the horizon was spherical (possibly
toroidal?). A Rigidity Theorem, which relates the logically distinct
notions of Killing and event horizons, was also introduced in this pa-
per. This crucial theorem underlies the reduction of the uniqueness
problems to two distinct types of Riemannian boundary value prob-
lems: in the static case - to a three dimensional Riemannian problem;
in the stationary case - to axial symmetry and a two dimensional Rie-
mannian problem. These results have been the subject of much subse-
quent work and have provided the basis for many future developments.
For example the Staticity Theorem has been firmly established in the
vacuum and electrovac case. That is, it has been proven that non-
degenerate stationary black holes with event horizons which are the
union of Killing horizons of the asymptotically time like Killing vector
field are static. (vacuum, electrovac... extension completed by Sudarsky

& Wald 93). In addition, around the same time, the basic and exten-
sive machinery for investigating stationary axi-symmetric black holes
was established by Carter. This included the reduction of the axially
symmetric, stationary, vacuum & electrovac, uniqueness problem to a
two dimensional boundary value problem for systems of elliptic p.d.e.’s.
(Hawking & Carter: summarized in the Les Houches lectures, 73 and in the

73 monograph by Hawking & Ellis).

While a number of problems associated with this agenda-setting work
have now been satisfactorily resolved the analyticity assumptions in the
Rigidity Theorem have yet to be satisfactorily dealt with. These mat-
ters have been extensively discussed in, for example, the reviews listed
below, so this talk will focus on the reduced Riemannian problems.

• No-hair theorems for asymptotically flat, axisymmetric, stationary, vac-
uum and electrovac black holes with non-degenerate horizons, leading
to the proof of the uniqueness of the Kerr solution, were exhibited.
(Carter, 71; Robinson 74, 75, 75) .
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A 1970’s proof of Israel’s theorem

(4d, vacuum, connected, without the equipotential or spherical topology

assumptions, Robinson 77)

Einstein’s field equations (in d>2 dimensions) are

(d)Rαβ = 8π(Tαβ −
1

d− 2
gαβT ) +

2

d− 2
Λgαβ

For static metrics in static coordinates, the vacuum, Λ = 0, field equa-
tions are

ds2 = −V 2dt2 + gabdxadxb,

(d)Rtt ≡ V DaDaV = 0
(d)Rta ≡ 0
(d)Rab ≡ Rab − V −1DaDbV = 0.

The black hole boundary conditions as formulated on Σ, t = const. which
is regular, and where 0 < V < 1, are:

(a) asymptotic flatness (as V → 1)
(b) regularity of the horizon H (as V → 0)
∂Σ regular, connected, compact geodesic 2-surface in Σ and

W ≡ W = −
1

2
∇[αkβ]∇

αkβ = gabV,a V,b = W0 = const.on ∂Σ.

The latter constant is the square of the surface gravity, and is necessarily
non-zero (i.e. the horizon is non-degenerate) in this connected horizon case.

.

8



Let Rabc be the Cotton tensor for gab,

Rabc = Db(Rac −
1

4
Rgac)−Dc(Rab −

1

4
Rgab).

From the vacuum field equations:

DaDaV = 0, (i)

Da(V
−1DaW ) = 2V RabR

ab, (ii)

RabcR
abc = 4V −4WDaD

aW − 4V −5WDaWDaV−

− 3V −4DaWDaW,

and (iii)

Da(pV
−1DaW + qWDaV )

=
p

4
V 3W−1RabcR

abc+

+
3

4
V −1W−1p[DaW + 8WV (DaV )(1− V 2)−1]2,

where

p(V ) = (cV 2 + d)(1− V 2)−3 > 0;

q(V ) = −2c(1− V 2)−3 + 6(cV 2 + d)(1− V 2)−4.

The divergence in (iii) is everywhere regular and non-negative on Σ. When
W = 0, Rabc = DaW = 0.
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Integrating (i)-(iii) over Σ gives

i) 4πm = W
1/2
0 S0. (this is the Smarr formula from which non-degeneracy

necessarily follows).

ii) W
1/2
0

∫
H

((2)R)dS ≥ 0;

since by the Gauss-Bonnet theorem,

∫
H

((2)R)dS = 8π(1−p), p = 0, 1, 2...,

it follows that p = 0, and the topology of H must be spherical.
iii)

with c = −1, d = +1; W0S0 ≤ π,

with c = 1, d = 0; W
3/2
0 S0 ≥

π

4m
.

It follows from these inequalities and the equality i) that Rabc must be
zero and hence the 3-geometry must be conformally flat, and also that W =
(1−V 2)4

16m2 . It is then straightforward to show that the space-time must be
Schwarzschild.
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1980’s: Systematization and new beginnings

• The introduction of new techniques.

(a) In the static case, the positive energy theorem, proven in 1979, was
used to deal with non-connected, non-degenerate horizons. (Bunting &

Masood-ul-Alam, 87)

(b) In the stationary, axially symmetric case, a sigma model/ har-
monic maps approach was introduced to deal with the reduced Rie-
mannian problem. The Kerr uniqueness proof was extended to the
electrovac case and the uniqueness of the Kerr-Newman solution was
demonstrated.(Bunting 83, Mazur, 82).

• Black holes with hair started to be found in some Einstein-Yang-Mills
systems.

• Kaluza-Klein & higher dimensional black hole solutions were found and
studied e.g.

Generalization of Kerr (Myers & Perry, 86), Einstein-Maxwell-dilaton black

hole (Gibbons, 82; Gibbons & Maeda, 88 ), generalization of Majumdar-

Papapetrou (Myers, 86).
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Non-existence of static multiple black holes - horizon not assumed connected
The exterior Schwarzschild solution is the maximally extended static,

vacuum, asymptotically flat space-time with non-degenerate, regular black
hole boundary. (Bunting & Masood-ul-Alam, 87)

They proved Σ, (t = const), must be conformally flat by a new technique,
as follows.

(i) They used a corollary to the positive mass theorem (Schoen & Yau 79,

Witten 81)

Let (N, γ) be a complete Riemannian 3-manifold which is asymptotically
Euclidean (topology plus fall off, γ = (1 + 2m

r
)δ + ..). If the scalar curvature

of γ is non-negative and m = 0, then (N, γ) is isometric to (R3, δ).
(ii) They turned (Σ, g) into an asymptotically Euclidean, complete, Rie-

mannian manifold with zero scalar curvature by
(a) making a conformal transformation g → ∓γ = 1

16
(1∓V )4g on 2 copies

of (Σ, g) so that (Σ, +γ) is asymptotically Euclidean with m = 0 and (Σ,−γ)
”compactifies the infinity”,

and by
(b) gluing the 2 copies of Σ along their boundaries to form (N, γ).
Then, (N, γ) must be flat by the corollary above and therefore (Σ, g) must

be conformally flat.

Virtues included: didn’t assume horizon connected, more easily general-
izable to complicated matter systems than older proofs, also generalizable to
higher dimensions since it didn’t use the 3 dimensional conformal tensor -
the Cotton tensor.
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Stationary, axially symmetric, asymptotically flat black holes, sigma models
& Kerr-Newman

Carter showed that coordinates exist on the (regular) domain of outer
communication of a stationary axi-symmetric, asymptotically flat, electrovac
black hole system with a connected, non-degenerate (regular) event horizon
such that

ds2 = −
ρ2

X
dt2 + X(dφ + Adt)2 +

e2hµ2(x2 − y2)

X
dσ2,

ρ2 = µ2(x2 − 1)(1− y2), µ2 = M2 − (J/M)2 −Q2.

dσ2 =
dx2

x2 − 1
+

dy2

1− y2
.

Carter also showed that the black hole uniqueness problem could be reduced
to a boundary value problem, on a 2 dimensional manifold with coordinates
(x, y) and metric dσ2. In the vacuum case the relevant field equations consti-
tute an elliptic system with (complex) independent variable, E = −X + iY
which determined A and X and hence the whole metric. The Lagrangian for
the vacuum differential equations is

L =
∇E.∇E

(E + E)2
;

with field equations (after Ernst):

∇(
∇E

(E + E)2
) +

2∇E.∇E

(E + E)3
= 0.

The vacuum black hole boundary conditions computed by Carter are:
asymptotic flatness conditions as x → ∞ : Y = 2Jy(3 − y2) + O(x−1),

X = c2x2(1− y2) + O(x−1);
regular symmetry axis conditions as y → ±1:
X&Y well behaved and X, ∂xY, ∂yY = O(1− y2),
X−1∂yX = −2y(1− y2)2 + O(1− y2).
regular horizon as x → 1 : X & Y well behaved, X, X−1, ∂xY, ∂yY = O(1).
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The 1975 proof of the uniqueness of the Kerr black hole was obtained
by using two solutions E1 and E2 to construct a generalized Green’s identity
of the form divergence = positive terms mod field equations. This was inte-
grated over the 2-dimensional manifold. Stokes’ theorem and the boundary
conditions were then used to show that the integral of the left hand side
was zero. Consequently all the postive terms on the right hand side had to
be zero. This implied that E1 = E2, and hence uniqueness followed. The
electrovac uniqueness problem was formally similar, but technically more
complicated, there were more equations and more independent variables. It
was expected that the vacuum proof would be extendable to the electrovac
case, but that it would be a lengthy, and somewhat unsatisfying matter, just
to construct the appropriate identity. It had long been realized that the
structure of the Lagrangians for these systems might well play an important
role in the uniqueness theorems. The latter had in fact been explicitly in-
dicated in a re-formulation of Carter’s vacuum no-hair theorem (Robinson,
75). However the role of the Lagrangian was not properly understood and
exploited until the (independent) work of Bunting & Mazur. They observed
that the theory of harmonic maps, or sigma models, over a two dimensional
manifold could be used to reformulate the Kerr uniqueness proof in a sys-
tematic way. This made the extension to a proof of the uniqueness of the
Kerr-Newman solution relatively straightforward. Their approaches pro-
vided a rationale lacking in the previous somewhat ad hoc constructions,
and enabled the possibilities for generalizations - or not, to be considered
within a well-understood framework.
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A brief outline of Mazur’s approach (for a detailed review see Mazur hep-

th/0101012).

Recall that the theory of non-linear sigma models includes the study of
harmonic maps from a Riemannian space M (xA) to a Riemannian coset space
N=G/H, where G is a non-compact group and H is a maximally compact
sub-group. The harmonic maps correspond to solutions of Euler-Lagrange
equations. Mazur related the sigma model formalism to the Lagrangian
formalism for the vacuum and electrovac field equations making use of earlier
work on the stationary field equations by Kinnersley and others. Working
within the sigma model context he was able to construct a Green’s identity,
of the type mentioned above, when the Riemannian symmetric space N, with
non-compact isometry group G, had a non-positive sectional curvature.

Appropriate application of this result gave the generalized Green’s iden-
tities needed to prove the black hole uniqueness results. For vacuum & Kerr
uniqueness: N=SU(1,1)/U(1): For electrovac and Kerr-Newman uniqueness:
N=SU(2,1)/S(U(2)×U(1)).
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1990’s - 2000’s: Rigour and convergence; string theory motivated divergence

• The new approach to static black holes was applied to prove uniqueness
in the non-degenerate electrovac and Einstein-Maxwell-dilaton systems
without assuming connectedness of the event horizon. (e.g. Masood-ul-

Alam (92, 93), Mars & Simon gr-qc/0105023)

The existence of non-connected regular stationary axi-symmetric vac-
uum black holes is an open question.

There are some related results: non-existence of 2 identical black holes
[Kreuzer 1999, Neugebauer 2000], general results, [Weinstein. gr-qc/9412036,

dg-ga/9509003].

• ”Mathematical relativity” & rigorous approach to “theorems”, filling in
holes in old proofs, sharpening and extending results. The development
of a programme of classification of static & stationary solutions. (e.g the

continuing work of Wald et al & Chrusciel,”No Hair” Theorems - Folklore,

Conjectures, Results. gr-qc/9402032).

In particular

(a) Staticity theorem completed at least up to electrovac, progress on
analyticity/ horizon question made. (Sudarsky & Wald; Chrusciel gr-

qc/0402087)

(b) Proof of the static vacuum uniqueness theorem extended to allow
the possibility that the horizon had N > 1 components, including de-
generate ones. Similar, although not quite so complete results have
been obtained in the electrovac case. (Chrusciel, see below)

• Many different matter sources, black holes with hair and Λ 6= 0,considered.
String/brane motivated new field equations introduced.

• Higher dimensional uniqueness theorems proven.
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Higher dimensional asymptotically flat black holes (d>4)
Motivation for consideration from the conjectures that black hole produc-

tion may occur in high energy experiments (TeV gravity).
A. Higher dimensional static cases:
Example of higher dimensional static black hole family:
Static electrovac black hole metric, Reissner−Nordstrom, d > 3 (Tangher-

lini, Nuovo Cimento,27, 636, 1963.):

ds2 = −V 2dt2 + V −2dr2 + r2dΩ2
d−2

V = (1−
C

rd−3
+

D2

r2(d−3)
)1/2,

F = −
∂h

∂r
dt ∧ dr, h = ±[

d− 2

8π(d− 3)
]1/2 D

rd−3

Mass =
C(d− 2)Ad−2

16π
, Q = ±D[

(d− 3)(d− 2)

8π
]1/2.

The global structure is similar to the four dimensional case. Stability anal-
ysis, similar to four dimensional analyses of Regge - Wheeler-Vishveshwara,
has been carried out. There are no regular static pertubations. (Ishibashi &

Kodama, hep-th/0305185).

Four dimensional uniqueness results for static black holes have been ex-
tended to uniqueness of d>4 Schwarzschild, Reissner-Nordstrom, e.m./dilaton,
sigma model.... The method of Bunting & Massod ul Alam is used to prove
conformal flatness of the spatial part of the metric. This, plus knowledge of
the conformal factor, allows uniqueness of (the known) spherically solutions
to be derived fairly directly. (Hwang, Geometriae Dedicata, 71, 5, 98; Gib-

bons, Ida & Shiromizu, gr-qc/0203004, hep-th/ 0206136; Rogatko hep-th/0207187,

0302091, 0406041)

The theorems depend on higher dimensional positive energy theorems.
(e.g. Dai, math-ph/0406006)
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B. Higher dimensional stationary case:
Example of higher dimensional stationary, asymptotically flat, vacuum

black hole family:
Myers-Perry 1986 generalization of the Kerr solution admits, in general,

[(d-1)/2] non-zero spins. Here the single spin case is exhibited:

ds2 = −dt2 +
µ

rd−5ρ2
(dt + a sin2 θdφ)2 +

ρ2

∆
dr2+

+ ρ2dθ2 + (r2 + a2) sin2 θdφ2 + r2 cos2 θdΩ2
(d−4).

ρ2 = r2 + a2 cos2 θ, ∆ = r2 + a2 −
µ

r(d−5)
,

M =
(d− 2)Ω(d−2)

16π
µ, J =

2Ma

(d− 2)
.

1. For d=4 reduces to Kerr where a horizon exists if | J |≤ M 2.
2. d>4, 3 Killing vector fields.
3. For d=5 there is a horizon if µ > a2 and no horizon if µ ≤ a2.
4. For d>5 there is always a horizon, independent of the magnitude of a

i.e. for arbitrarily large spin.
(Suggested instability - Emparan & Myers, hep-th/0308056)

5. For d odd, black holes with negative mass -causality violations.
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Non-Uniqueness of the rotating black hole
However, in five dimensions there is also an asymptotically flat, station-

ary, vacuum solution with a horizon of topology S1 × S2 : a black ring,
characterized by mass M and spin J. It has 3 Killing vector fields. The
five dimensional Myers-Perry solution with rotation in a single plane (and
horizon of topology S3) can be obtained as a branch of the same family of
solutions. There exist Myers-Perry & Emparan-Reall black holes and black
rings with the same values of M and J. They can be distinguished by their
topology and by their mass dipole measured at infinity. Emparan & Reall

(hep-th/0110260)

In this case of the Emparan-Reall family however, there is no static and
spherically symmetric limit black hole. Pertubations analysis off spherically
symmetric vacuum solution suggests that the Myers-Perry solutions are the
only regular black holes near the static limit (Kodama hep-th/0403239).
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Question: Is there Uniqueness/ no hair subject to extra conditions, e.g.
fixed horizon topology, stability (Kol, hep-th/0208056), or fixed higher multi-
pole moments(Tomizawa et al, gr-qc/0405134)?

Recent extension of Kerr uniqueness to d=5:
In five dimensions, assuming two commuting rotational Killing vectors

in addition to the stationary Killing vector field, and the sphericity of the
horizon topology, the vacuum black hole is uniquely characterized by the mass
and a pair of angular momenta, i.e. by the Myers Perry class of solutions.

Method of proof: Carter/Mazur type formulation leading to a sigma
model, SL(3,R)/SO(3), boundary value problem.

Problems with extension to higher dimensions: ”An n-dimensional space-
time admitting (n-3) commuting Killing vector fields is always describable
by a non-linear sigma model (Maison). However the n-dimensional Myers-
Perry black hole space-time has only [(n-1)/2] commuting space-like Killing
vector fields.”

(Morisawa & Ida, gr-qc/0401100)
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Current state of uniqueness results for vacuum and electrovac in 4 dimensions

1. Most complete formulation of Israel’s theorem for static, vacuum black
holes in four dimensions

(Chrusciel, gr-qc/9809088)

Let (M,g) be a static solution of the vacuum Einstein equations with
defining Killing vector K. Suppose that M contains a connected space-like
hypersurface Σ the closure Σ of which is the union of asymptotically flat ends
and of a compact interior, such that:

1. We have gµνK
µKv < 0 on Σ.

2. The topological boundary ∂Σ = Σ\Σ of Σ is a non-empty topological
manifold with gµνK

µKv = 0 on ∂Σ.
Then Σ is diffeomorphic to R3 minus a ball, so that it is simply connected,

it has only one asymptotically flat end, and its boundary ∂Σ is connected.
Further there exists a neighbourhood of Σ in M which is isometrically diffeo-
morphic to an open subset of the Schwarzschild space-time.
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2. A recent formulation of Israel’s theorem for static, electrovac space-times
in four dimensions

(Chrusciel gr-qc/9810022; see also Rubak, 88, Simon 92 , Heusler 94, 97)

Let (M, g, F) be a static solution of the Einstein-Maxwell equations with
defining Killing vector K. Suppose that M contains a connected and simply
connected space-like hypersurface Σ, the closure Σ of which is the union of
an asymptotically flat end and of a compact interior such that:

i. We have gµνK
µKv < 0 on Σ.

ii. The topological boundary ∂Σ = Σ\Σ of Σ is a non-empty topological
manifold with gµνK

µKv = 0 on ∂Σ.
Then:
1. If ∂Σ is connected then Σ is diffeomorphic to R3 minus a ball. Moreover

there exists a neighbourhood of Σ in M which is isometrically diffeomorphic
to an open subset of the (extreme or non-extreme) Reissner-Nordstrom space-
time.

2. If ∂Σ is not connected, and if for all i, j : QiQj ≥ 0, where Qi is the
charge of the i-th connected component of ∂Σ that intersects the degenerate
horizons, then Σ is diffeomorphic to R3 minus a finite union of disjoint balls.
Moreover the space-time contains only degenerate horizons, and there exists
a neighbourhood of Σ in M which is isometrically diffeomorphic to an open
subset of the standard Majumdar-Papapetrou space-time.

ds2 = −V 2dt2 + V −2δabdxadxb; V −1 = 1 + Σi
mi

ri
,

ri = [(x− xi)
2 + (y − yi)

2 + (z − zi)
2]1/2.

ri = 0 event horizon cpt. Ai = 4πm2
i , | Qi |= mi.
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3. The generally agreed stationary uniqueness results (as before)

The non-degenerate Kerr black holes satisfying m2 > a2

ds2 =
Σ

∆
dr2 + Σdθ2 − (

∆− a2 sin2 θ

Σ
)dt2−

− (
2a sin2 θ(r2 + a2 −∆

Σ
)dtdϕ+

+
(r2 + a2)2 −∆a2 sin2 θ

Σ
sin2 θdϕ2;

where Σ = r2 + a2, ∆ = r2 + a2 − 2mr.

0 ≤ a < m;

r+ = m + (m2 − a2)1/2 < r < ∞.

exhaust the family of non-degenerate stationary axisymmetric vacuum con-
nected black holes.

Similarly for Kerr-Newman black holes satisfying m2 > a2 + P 2 + Q2.
(The condition of axisymmetry can be removed if Hawking’s Rigidity

theorem can be completed e.g. by removing the analyticity requirements.)

Some surveys & reference sources:

• W Israel, Dark stars: the evolution of an idea, pp 199-277 in

300 years of gravitation,

eds. S Hawking & W Israel (Cambridge University Press, 1987)

• M Heusler, Black Hole Uniqueness Theorems,

(Cambridge University Press, 1996)

• M Heusler, Stationary Black Holes: Uniqueness and beyond,

Living Rev. Relativity 1, (1998),

http://www.livingreviews.org/Irr-1998-6

• B Carter, Has the black hole equilibrium problem been solved?,

gr-qc/9712038

• P Chrusciel, Black holes, gr-qc/0201053
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