Empirical Neutrino Mass Matrix Related to Up-Quark Masses

Yoshio Koide

IHERP, Osaka University, 1-16 Machikaneyama, Toyonaka, Osaka 560-0043, Japan E-mail address: koide@het.phys.sci.osaka-u.ac.jp

A new approach to quark and lepton masses is proposed: the mass spectra originate in vacuum expectation values of U(3) flavor nonet (gauge singlet) scalars. For example, we assume a superpotential $W = W_Y + W_e + W_u + W_{\nu} + W_d$, where

$$W_Y = \sum_{i,j} \frac{y_{\nu}}{\Lambda} (Y_{\nu})_j^i L_i H_u N^j + \sum_{i,j} \frac{y_e}{\Lambda} (Y_e)_j^i L_i H_d E^j + \cdots,$$
 (1)

$$W_e = \lambda_e \text{Tr}[\Phi_e \Phi_e \Phi_e] + m_e \text{Tr}[\Phi_e \Phi_e] + \mu_e^2 \text{Tr}[\Phi_e] + \lambda_{Ye} \text{Tr}[\Phi_e \Phi_e Y_e] + m_{Ye} \text{Tr}[Y_e Y_e], \tag{2}$$

and so on. From SUSY vacuum conditions $\partial W/\partial \Phi_e = 0$ and $\partial W/\partial Y_e = 0$, we obtain a bilinear charged lepton mass relation $Y_e = -(\lambda_{Ye}/2m_{Ye})\Phi_e\Phi_e$, and $3\lambda_e\Phi_e\Phi_e + 2m_e\Phi_e + \mu_e^2\mathbf{1} + \lambda_{Ye}(\Phi_eY_e + Y_e\Phi_e) = 0$, respectively. The latter equation together with the former one leads to a cubic equation $c_3^e\Phi_e\Phi_e\Phi_e + c_2^e\Phi_e\Phi_e + c_1^e\Phi_e + c_0^e\mathbf{1} = 0$, which can completely determine three eigenvalues of $\langle \Phi_e \rangle$, where $c_3^e = \lambda_{Ye}^2/m_{Ye}$, $c_2^e = -3\lambda_e$, $c_1^e = -2m_e$ and $c_0^e = -\mu_e^2$, so that, for example, we obtain

$$\frac{m_e + m_\mu + m_\tau}{(\sqrt{m_e} + \sqrt{m_\mu} + \sqrt{m_\tau})^2} = \frac{\text{Tr}[\Phi_e \Phi_e]}{\text{Tr}^2[\Phi_e]} = 1 - 2\frac{c_1^e c_3^e}{(c_2^e)^2},\tag{3}$$

$$\frac{\sqrt{m_e m_\mu m_\tau}}{(\sqrt{m_e} + \sqrt{m_\mu} + \sqrt{m_\tau})^3} = \frac{\det \Phi_e}{\text{Tr}^3[\Phi_e]} = \frac{c_0^e (c_3^e)^2}{(c_2^e)^3}.$$
 (4)

Thus, in the new approach [1], we investigate relations among quark and lepton masses and mixings, not by treating the Yukawa coupling constants directly, but by investigating the structure of the superpotential.

In the present work [2], we will propose a specific form of $W_{\nu} = W_{\nu}(Y_{\nu}, \Phi_{u}, Y_{e})$ in addition to $W_{e} = W_{e}(Y_{e}, \Phi_{e})$ (Eq.(2))and $W_{u} = W_{u}(Y_{u}, \Phi_{u})$ (similar to Eq.(2)) from phenomenological consideration, and thereby we will find an empirical neutrino mass matrix which is described in terms of the up-quark and charged lepton masses and which leads to a nearly tribinaximal mixing without assuming any discrete symmetry:

$$(M_{\nu}^{Dirac})_{ij} = m_0^{\nu} \left[\left(\frac{1}{m_{ei}} + \frac{1}{m_{ej}} \right) [V^{\dagger}(\pi) \Phi_u^D V(\pi)]_{ij} + \xi_0 \delta_{ij} \right], \tag{5}$$

where $(\Phi_u^D)_{ii} \propto \sqrt{m_{ui}}$ and $V(\delta)$ with $\delta \simeq \pi/3$ is the observed CKM matrix. Note that if Y_d and Y_e are simultaneously diagonalized in a same basis, the matrix form of Φ_u ($\propto Y_u^{1/2}$) will be described by $V^{\dagger}(\pi/3)\Phi_u^D V(\pi/3)$ on a diagonal basis of Y_d . When we use $V(\pi)$ instead of $V(\pi/3)$, the matrix (5) can predict $\sin^2 2\theta_{23} = 1.000$ and $\tan^2 \theta_{12} = 0.513$ from the observed up-quark and charged lepton masses and CKM matrix parameters, independently of the parameter ξ_0 .

- [1] Y. Koide, arXive:0802.1082, to be published in Phys.Lett. B (2008).
- [2] Y. Koide, in preparation.