Making Sense of Rare Earth Electronic Structure. A Tutorial.

Mike Reid University of Canterbury Christchurch New Zealand <u>mike.reid@canterbury.ac.nz</u>

Te Whare Wānanga o Waitaha CHRISTCHURCH NEW ZEALAND

for Photonic and Quantum Technologies

Sergey Feofilov. 1958-2020 Marek Grinberg. 1952-2020

Yashar Alizadeh Nick Jobbitt Pratik Solanki Kieran Smith Jamin Martin Dian Zou Sangeetha Balabhadra Mike Reid Jon Wells Sagar Mothkuri

Bulk (YSO etc.) Nanoparticles Ring Lasers

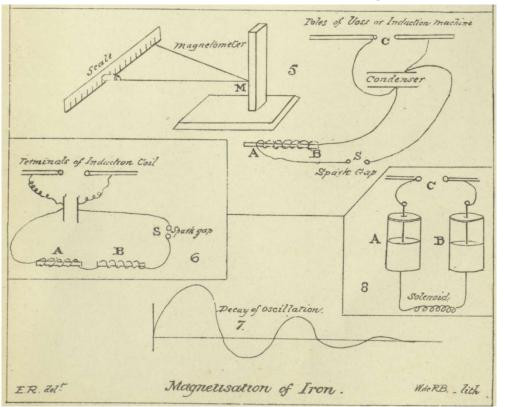
Lily Williams Michael Moull Ben Haenraets Emma Johnson Rezvan Anvari

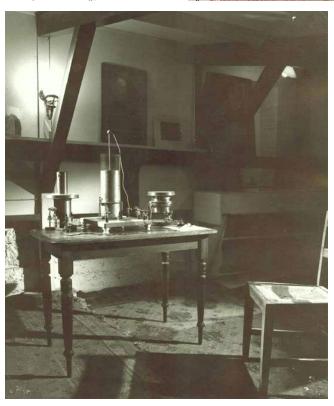
The Dodd-Walls Centre for Photonic and Quantum Technologies

ART. LIX.—Magnetization of Iron by High-frequency Discharges.

By E. RUTHERFORD, M.A.

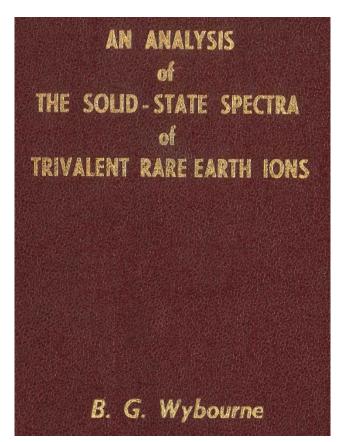
[Read before the Philosophical Institute of Canterbury, 7th November, 1894.]





It has been shown that iron still exhibits magnetic properties in fields of over 100,000,000 oscillations per second. A needle may be magnetized or demagnetized in open circuit by the oscillations set up in the wire.

Brian Wybourne. PhD 1960. Later Professor of Physics



Optical and Magnetic Properties of some Transition Ion Complexes. PhD 1963

R.M. Macfarlane

Physics Department

University of Canterbury. R.M. Macfarlane.

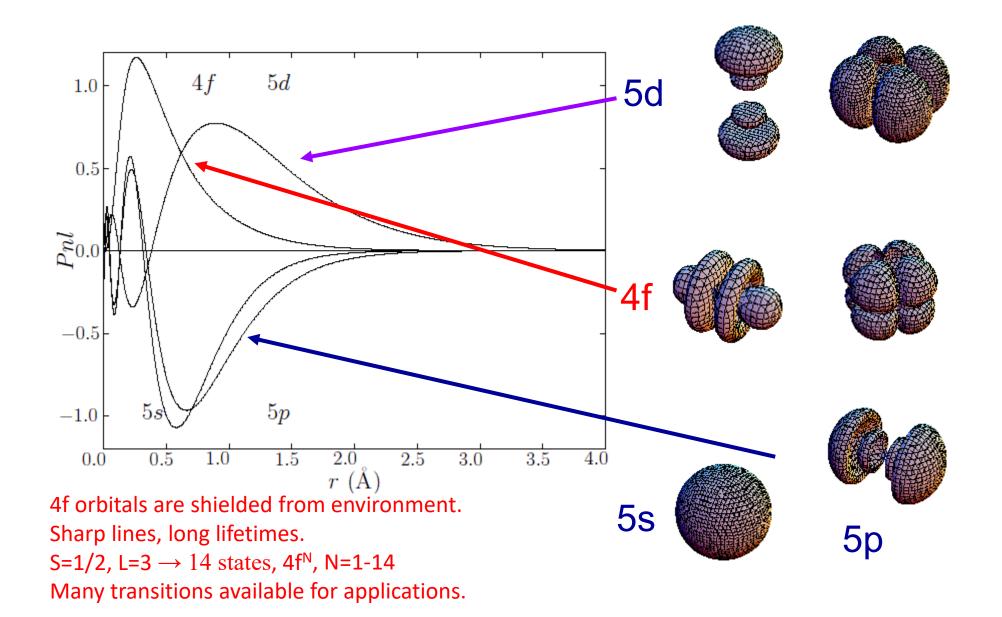
SUB-KILOHERTZ OPTICAL LINEWIDTHS OF THE ${}^{7}F_{0} \leftrightarrow {}^{5}D_{0}$ TRANSITION IN $Y_{2}O_{3}:Eu^{3+}$

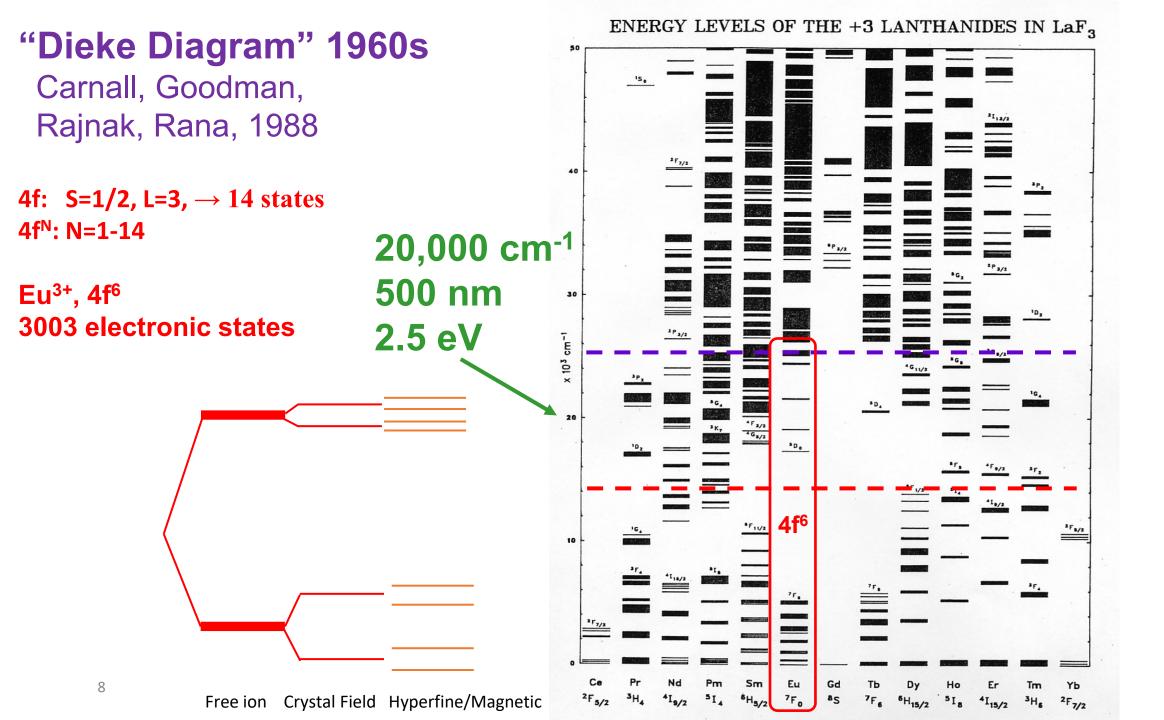
R.M., MACFARLANE and R.M. SHELBY IBM Research Laboratory, San Jose, CA 95193, USA

Received 17 June 1981

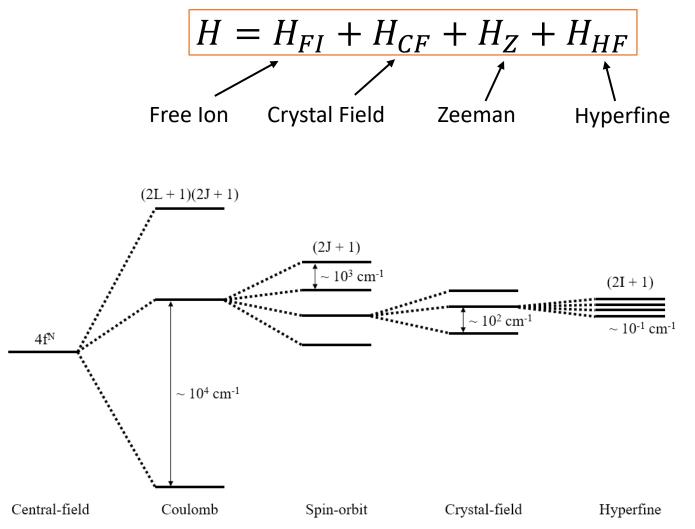
Homogeneous optical linewidths as small as 760 Hz (fwhm) have been observed in Y_2O_3 : Eu³⁺ using delayed heterodyne photon echoes. Hyperfine and lifetime contributions to dephasing are estimated to contribute < 300 Hz to this width, and the remainder is attributed to quasi-resonant energy transfer.

Lanthanide (Rare Earth) 3+ ground state: 5s² 5p⁶ 4f^N 5d⁰





Modelling the 4f^N structure of rare-earth doped crystals



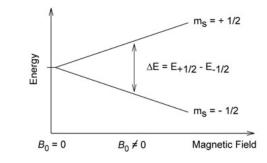
$$H_{CF} = \sum_{k,q} B_q^k C_q^{(k)}$$

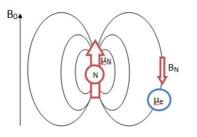
 C_1 symmetry \rightarrow 27 crystal-field parameters

Zeeman

 $H_z = \mu_B \mathbf{B} \bullet (\mathbf{L} + 2\mathbf{S})$ Magnetic field can be experimentally varied.

Hyperfine $H_{HF} = A N \bullet I + Q H_Q$ A and Q are parameters





Eu^{3+ 7}F₀ and ⁵D₀ : electronic effects are small so Direct interaction of nucleus with magnetic field and lattice are important.

Parameter trends across the lanthanide series.

C-K Duan and P A Tanner, J. Phys. Chem. A, 2010, 114, pp 6055–6062



10

Reminiscencies of a quenched luminescence investigatory $\stackrel{\text{tr}}{\sim}$

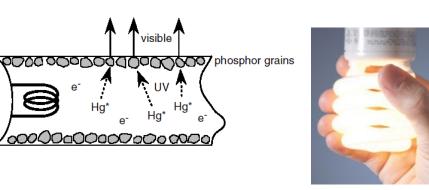
George Blasse

University Utrecht, Debye Institute, P.O. Box 80 000, 3508 TA Utrecht, The Netherlands

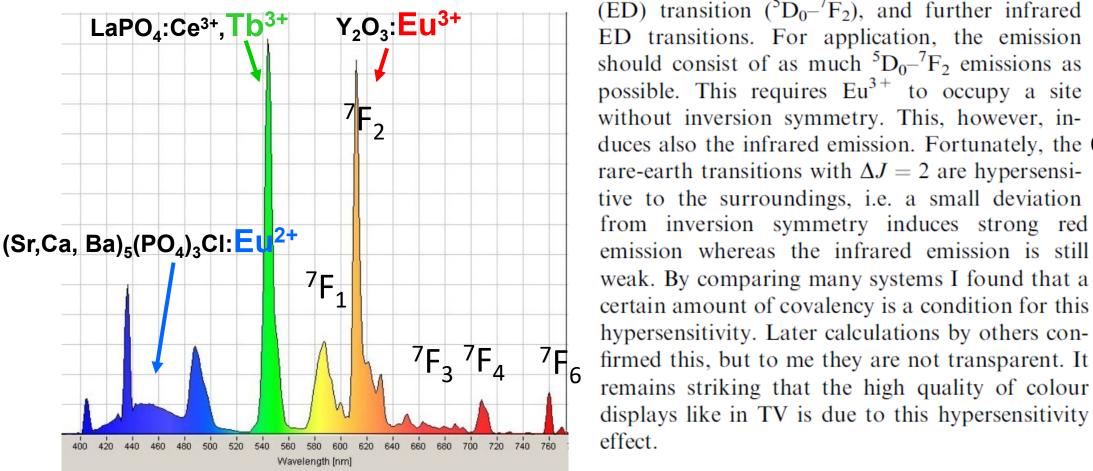
Journal of Luminescence 100 (2002) 65-67

Hypersensitivity: The emission of Eu^{3+} consists of an orange allowed magnetic-dipole transition $({}^{5}D_{0}-{}^{7}F_{1})$, a red parity—forbidden electric-dipole (ED) transition $({}^{5}D_{0}-{}^{7}F_{2})$, and further infrared ED transitions. For application, the emission should consist of as much ${}^{5}D_{0}-{}^{7}F_{2}$ emissions as possible. This requires Eu^{3+} to occupy a site without inversion symmetry. This, however, induces also the infrared emission. Fortunately, the George Blasse rare-earth transitions with $\Delta J = 2$ are hypersensitive to the surroundings, i.e. a small deviation from inversion symmetry induces strong red emission whereas the infrared emission is still weak. By comparing many systems I found that a certain amount of covalency is a condition for this hypersensitivity. Later calculations by others confirmed this, but to me they are not transparent. It remains striking that the high quality of colour

1934-2020



electrode



Angular momentum states and tensor operators

 $\begin{bmatrix} J_x, J_y \end{bmatrix} = iJ_z, \qquad \mathbf{J}^2 \equiv J_x^2 + J_y^2 + J_z^2$ $\begin{aligned} J_z |jm\rangle &= m|jm\rangle, \\ \mathbf{J}^2 |jm\rangle &= j(j+1)|jm\rangle, \\ \mathbf{J}^2 |jm\rangle &= \sum_{m'} D_{m'm}^{(j)}(R)|jm'\rangle \end{aligned}$

$$[J_z, T_q^{(k)}] = q T_q^{(k)}$$
$$D(R) T_q^{(k)} D(R)^{\dagger} = \sum_{q'} D_{q'q}^{(k)}(R) T_{q'}^{(k)}$$

Rather than classifying states by eigenvalues and operators by commutators, it is helpful to classify both in terms of behaviour under rotations.

Wigner-Eckart theorem $\langle \alpha JM | T_q^{(k)} | \alpha' J'M' \rangle = (-1)^{J-M} \begin{pmatrix} J & k & J' \\ -M & q & M' \end{pmatrix} \langle \alpha J | | T^{(k)} | | \alpha' J' \rangle.$ 3j symbols or Clebsch-Gordan coefficients: Reduced matrix elements: "geometry"

"physics"

Selection rules: M' + q = M and $|J - J'| \le k \le J + J'$.

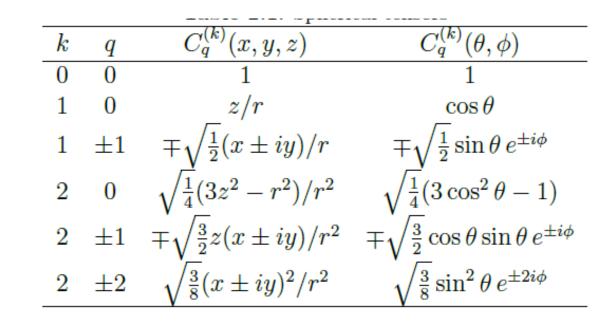
Clearest proof is to express $T^{(k)}_{\alpha}$ as a linear combination of |jm><j'm'| kets and bras that transform as kq, recalling transformation properties:

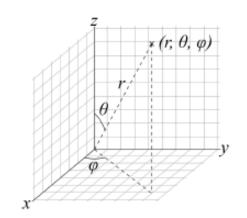
$$D(R)|jm\rangle = \sum_{m'} D_{m'm}^{(j)}(R)|jm'\rangle$$
$$D(R)T_q^{(k)}D(R)^{\dagger} = \sum_{q'} D_{q'q}^{(k)}(R)T_{q'}^{(k)}$$

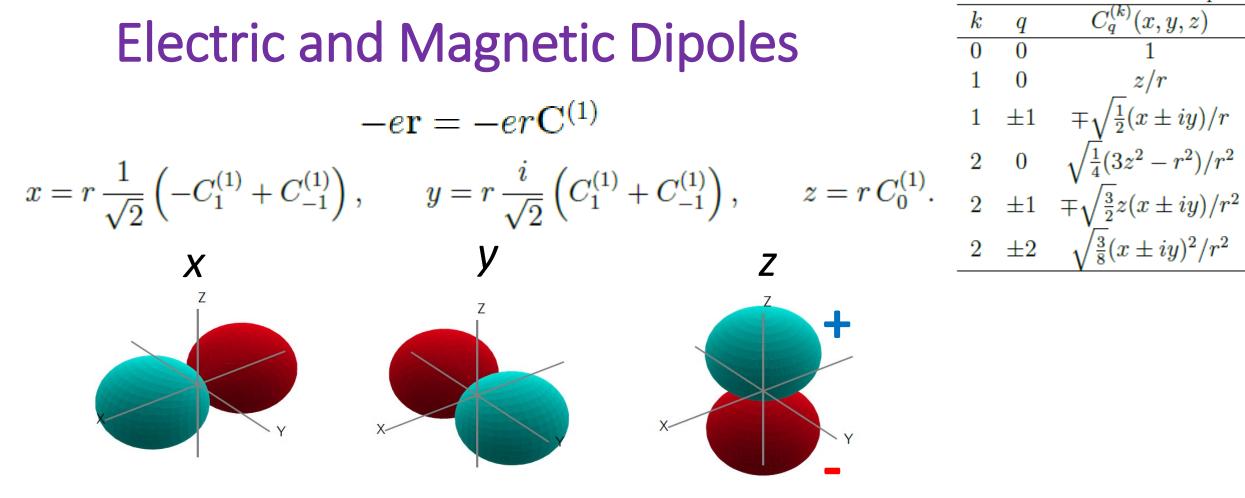
The linear combination of |m><j'm'| required gives the 3*j* symbol (or Clebsch-Gordan coeffient).

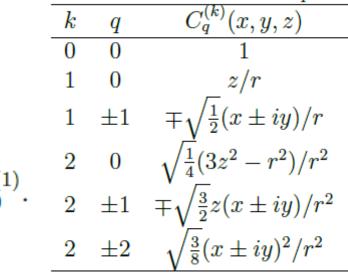
Spherical Harmonics and Spherical Tensors

$$Y_{lm}(\theta,\phi) = \sqrt{\frac{2l+1}{4\pi}} \sqrt{\frac{(l-m)!}{(l+m!)}} P_{lm}(\cos\theta) e^{im\phi}$$
$$C_q^{(k)}(\hat{\mathbf{r}}) = C_q^{(k)}(\theta,\phi) = \sqrt{\frac{4\pi}{2k+1}} Y_{kq}(\theta,\phi)$$









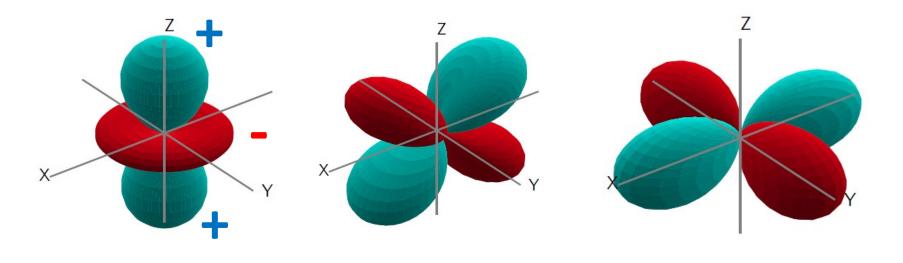
$$\mathbf{B} \cdot \mathbf{J} = \sum_{i=x,y,z} B_i J_i.$$
$$J_x = r \frac{1}{\sqrt{2}} \left(-J_1^{(1)} + J_{-1}^{(1)} \right), \qquad J_y = r \frac{i}{\sqrt{2}} \left(J_1^{(1)} + J_{-1}^{(1)} \right), \qquad J_z = r J_0^{(1)}.$$

Crystal Field Potential

$$Y_{lm}(\theta,\phi) = \sqrt{\frac{2l+1}{4\pi}} \sqrt{\frac{(l-m)!}{(l+m!)}} P_{lm}(\cos\theta) e^{im\phi}$$

$$C_q^{(k)}(\hat{\mathbf{r}}) = C_q^{(k)}(\theta, \phi) = \sqrt{\frac{4\pi}{2k+1}} Y_{kq}(\theta, \phi)$$

$$\frac{k \quad q \quad C_q^{(k)}(x,y,z) \quad C_q^{(k)}(\theta,\phi)}{1 \quad 1} \\
\frac{1 \quad 0 \quad z/r \quad \cos\theta}{1 \quad \pm 1 \quad \mp \sqrt{\frac{1}{2}}(x \pm iy)/r \quad \mp \sqrt{\frac{1}{2}}\sin\theta \, e^{\pm i\phi}} \\
\frac{2 \quad 0 \quad \sqrt{\frac{1}{4}}(3z^2 - r^2)/r^2 \quad \sqrt{\frac{1}{4}}(3\cos^2\theta - 1)}{2 \quad \pm 1 \quad \mp \sqrt{\frac{3}{2}}z(x \pm iy)/r^2 \quad \mp \sqrt{\frac{3}{2}}\cos\theta \sin\theta \, e^{\pm i\phi}} \\
\frac{2 \quad \pm 2 \quad \sqrt{\frac{3}{8}}(x \pm iy)^2/r^2 \quad \sqrt{\frac{3}{8}}\sin^2\theta \, e^{\pm 2i\phi}} \\$$



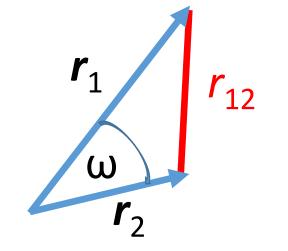
Note: Potential is **real**. **Phases** of parameters determine **orientation**, e.g. $e^{iq\varphi}$

C²₀(*r*)

 $C_{1}^{2}(r) - C_{-1}^{2}(r)$

 $C_{2}^{2}(r) - C_{-2}^{2}(r)$

Coulomb interaction and crystal field: Addition theorem



$$\frac{1}{r_{12}} = \sum_{k=0}^{\infty} \frac{r_{<}^{k}}{r_{>}^{k+1}} P_{k}(\cos \omega) \quad \text{COS } \omega: -1...$$
$$= \sum_{k=0}^{\infty} \frac{r_{<}^{k}}{r_{>}^{k+1}} C^{(k)}(\hat{\mathbf{r}}_{1}) \cdot C^{(k)}(\hat{\mathbf{r}}_{2})$$
$$= \sum_{k=0}^{\infty} \frac{r_{<}^{k}}{r_{>}^{k+1}} \sum_{q=-k}^{+k} C_{q}^{(k)}(\hat{\mathbf{r}}_{1}) C_{-q}^{(k)}(\hat{\mathbf{r}}_{2})(-1)^{q}.$$

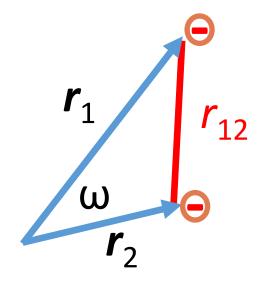
Legendre Polynomials orthogonal: -1..1 k P_k $\boxed{\begin{array}{c} 0 & 1\\ 1 & x\\ 2 & (3x^2 - 1)/2 \end{array}}$

$$\frac{k \quad q \quad C_q^{(k)}(x,y,z)}{0 \quad 0 \quad 1} \\
1 \quad 0 \quad z/r \\
1 \quad \pm 1 \quad \mp \sqrt{\frac{1}{2}(x \pm iy)/r} \\
2 \quad 0 \quad \sqrt{\frac{1}{4}(3z^2 - r^2)/r^2} \\
2 \quad \pm 1 \quad \mp \sqrt{\frac{3}{2}}z(x \pm iy)/r^2 \\
2 \quad \pm 2 \quad \sqrt{\frac{3}{8}}(x \pm iy)^2/r^2$$

Addition Theorem - Example

<i>z</i> =+1	$1/r_{12} = 1/3$ cos ω = cos π = -1	Legendre Polynomials orthogonal: -11 k P _k
r_1 $\omega = \pi$ r_2 $r_{12} = 3$	$ \frac{1}{r_{12}} = \sum_{k=0}^{\infty} \frac{r_{<}^{k}}{r_{>}^{k+1}} P_{k}(\cos \omega) = \frac{1^{0}}{2^{1}} \times (1) + \frac{1^{1}}{2^{2}} \times (-1) + \frac{1^{2}}{2^{3}} \times \left(\frac{1}{2} \left(3 \times (-1)^{2} - 1\right)\right) + \dots = \frac{1}{2} - \frac{1}{4} + \frac{1}{8} + \dots $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
z=-2	$\frac{1}{r_{12}} = \sum_{k=0}^{\infty} \frac{r_{<}^{k}}{r_{>}^{k+1}} \sum_{q=-k}^{+k} C_{q}^{(k)}(\hat{\mathbf{r}}_{1}) C_{-q}^{(k)}(\hat{\mathbf{r}}_{2}) (-1)^{q}$ $= \frac{1^{0}}{2^{1}} \times 1 \times 1 + \frac{1^{1}}{2^{2}} \times (+1) \times (-1) + \frac{1^{2}}{2^{3}} \times \left(\left(\sqrt{\frac{1}{4}} (3-1) \right) \times \left(\sqrt{\frac{1}{4}} (3-1) \right) \right) \times \left(\sqrt{\frac{1}{4}} (3-1) \right) \times \left(\sqrt{\frac{1}{4}} (3-1) \right)$ $= \frac{1}{2} - \frac{1}{4} + \frac{1}{8} + \dots$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Coulomb Interaction



$$\frac{1}{r_{12}} = \sum_{k=0}^{\infty} \frac{r_{<}^{k}}{r_{>}^{k+1}} P_{k}(\cos \omega)$$

$$= \sum_{k=0}^{\infty} \frac{r_{<}^{k}}{r_{>}^{k+1}} \mathbf{C}^{(k)}(\hat{\mathbf{r}}_{1}) \cdot \mathbf{C}^{(k)}(\hat{\mathbf{r}}_{2})$$

$$= \sum_{k=0}^{\infty} \frac{r_{<}^{k}}{r_{>}^{k+1}} \sum_{q=-k}^{+k} C_{q}^{(k)}(\hat{\mathbf{r}}_{1}) C_{-q}^{(k)}(\hat{\mathbf{r}}_{2})(-1)^{q}.$$

$$H_{\text{Coulomb}} = \frac{e^2}{4\pi\epsilon_0} \sum_{k=i< j}^{\text{even}} \sum_{i< j} \frac{r_{<}^k}{r_{>}^{k+1}} \left[\mathbf{C}^{(k)}(\hat{\mathbf{r}}_i) \cdot \mathbf{C}^{(k)}(\hat{\mathbf{r}}_j) \right]$$

$$= \sum_{k}^{\text{even}} F^{k} \left[\sum_{i < j} \mathbf{C}^{(k)}(\hat{\mathbf{r}}_{i}) \cdot \mathbf{C}^{(k)}(\hat{\mathbf{r}}_{j}) \right]$$
$$= \sum_{k}^{\text{even}} F^{k} f_{k}.$$

Two-centre addition theorem: Ligand polarization(dynamic coupling) and energy transfer

f electron r_j r_{jk} r_k r_k r_k

lonic transitions hypersensitive to environment

B. R. Judd

Physics Department, The Johns Hopkins University, Baltimore, Maryland 21218 (Received 5 February 1979)

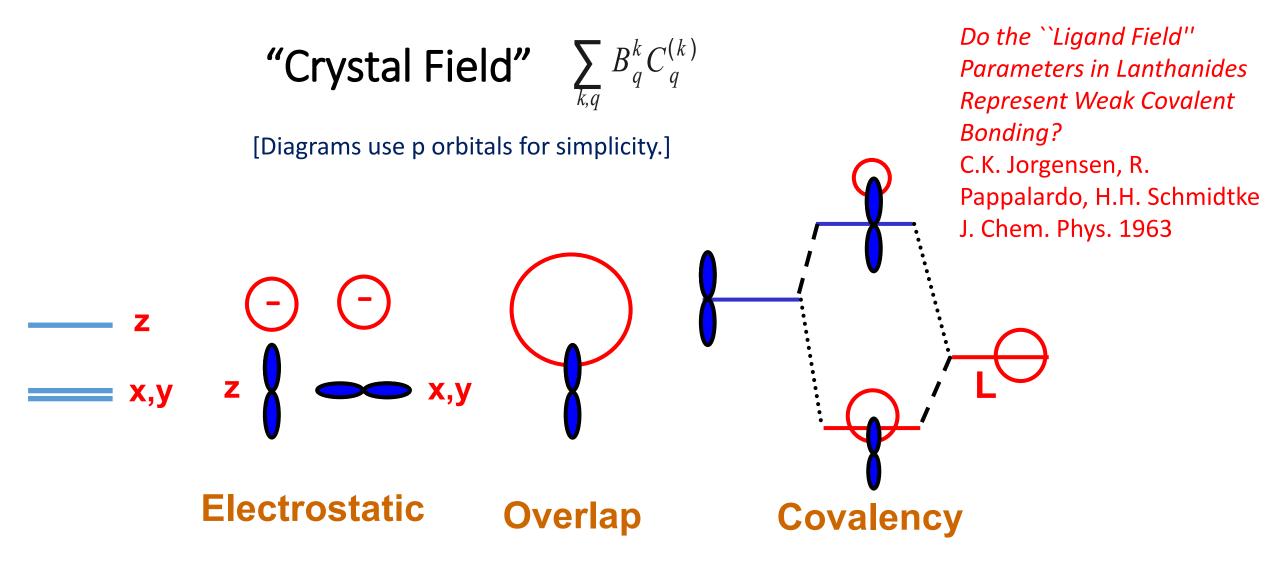
$$r_{jk}^{-1} = \sum_{l,t} r_j^{l} r_{kL}^{t} R_{L}^{-l-t-1} [(2l+2t)!/(2l)!(2t)!]^{1/2} \\ \times (-1)^{t} (C_j^{(1)} C_{kL}^{(1)})^{(l+t)} \cdot C_{L}^{(1+t)} .$$

Interaction between f electron and Ligand electron

Energy transfer

In this case there is an interaction between f electrons on two ions. Dipole-dipole is l=t=1, so we have $1/R^3$. Square gives $1/R^6$. Exchange interaction gives a different distance dependence.

We can convert to eV by dividing by 1.6×10^{-19} C, and multiply by 8066 to convert to cm⁻¹. So B_0^2 is 0.11 eV, or 860 cm⁻¹.



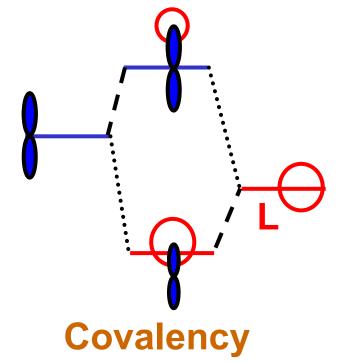
All increase energy of z orbital more than x,y

Orbital energies or Hamiltonian matrix \leftrightarrow crystal-field parameters

Do the ``Ligand Field'' Parameters in Lanthanides Represent Weak Covalent Bonding?

C.K. Jorgensen, R. Pappalardo, H.H. Schmidtke, J. Chem. Phys. 1963

Abstract: Instead of explaining the seven different f-orbital energies or five different d-orbital energies by parameters $A_{nm} \langle r_n \rangle$ of the electrostatic ligand field model, we propose to classify the energy levels according to the actual one-electron energies and to interpret these quantities by the weak effects of σ antibonding on the partly filled shell. Calculations of the relative angular dependence of such effects are made in a simple model and compared with experimental data for nine- and eight-coordinated lanthanide compounds The agreement is judged to be much more satisfactory than when the electrostatic model is applied, and the number of freely chosen parameters is much smaller.



Rotations and the Superposition Model

Electrostatic model: $B_q^k = \frac{e^2}{4\pi\epsilon_0} \langle r^k \rangle \sum_r \frac{1}{r_L^{k+1}} C_{-q}^{(k)}(\theta_L, \phi_L)(-1)^q$

Rotation matrix is related to the spherical tensors:

$$D_{q'0}^{(j)}(\alpha = \phi, \beta = \theta, \gamma = 0) = (-1)^{q'} C_{-q'}^{(K)}(\theta, \phi).$$

Rotate from Z and change the distance to build up CF in terms of single ligand CF:

$$B_q^k = \bar{B}_k(R_0) \sum_L C_{-q}^{(k)}(\theta_L, \phi_L) (-1)^q \left(\frac{R_0}{R_L}\right)^{t_k}$$

$$B_0^k(R_L) \equiv \bar{B}_k(R_L)$$

Table A.1. The Wigner rotation matrices $D^{1}_{m',m}(\alpha,\beta,\gamma)$.

θ

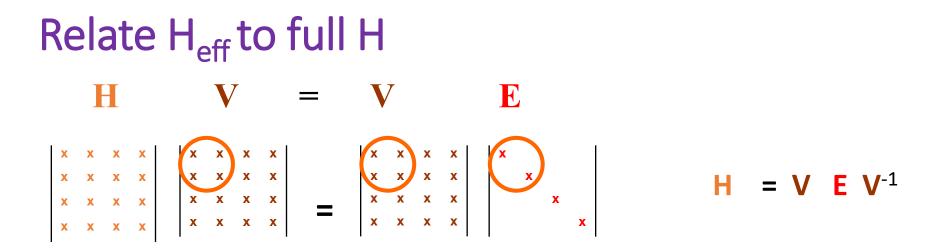
R

X

m'	1	m 0	-1				
1	$\frac{1+\coseta}{2} e^{-i(lpha+\gamma)}$	$-rac{1}{\sqrt{2}}\sineta e^{-ilpha}$	$rac{1-\coseta}{2}e^{-i(lpha-\gamma)}$	$\frac{k}{0}$	$\frac{q}{0}$	$\frac{C_q^{(k)}(x,y,z)}{1}$	$C_q^{(k)}(heta,\phi)$ 1
0	$\frac{1}{\sqrt{2}}\sin\beta e^{-i\gamma}$	\coseta	$-rac{1}{\sqrt{2}}\sineta e^{i\gamma}$	1	0	z/r	$\cos \theta$
-1	$\frac{1-\cos\beta}{2} e^{i(\alpha-\gamma)}$	$rac{1}{\sqrt{2}}\sineta e^{ilpha}$	$\frac{1+\cos\beta}{2} e^{i(\alpha+\gamma)}$	1	±1	$\mp \sqrt{\frac{1}{2}(x \pm iy)/r}$	$\mp \sqrt{\frac{1}{2}\sin\theta} e^{\pm i\phi}$

Relating ab-initio and crystal-field calculations

- Modern quantum-chemistry calculations for rare-earth materials:
 - DFT calculation using VASP.
 - 4f energies (without spin-orbit) using AIMP embedded cluster approach
 - [Seijo et al J. Chem. Phys. 114, 118 (2001).]
 - SA-CASSCF calculation using MOLCAS.
- Use calculations for Ce³⁺ to estimate parameters for the series.
 - For high symmetry we can just fit the energy levels of the ab-initio calculation.
 - Not possible in low symmetries such as D₂ (YAG), C₁ (YSO)
 - Need to relate the matrices.
 - Project the Hamiltonian into the model space. (Hurtubise and Freed, Adv. Chem. Phys. 83, 465, 1993).



Use a subset of energies and eigenvectors from ab-initio calculation:

$$\begin{split} \mathbf{H}_{\text{eff}}^{\text{NH}} &= \mathbf{V}_{p} \ \mathbf{E}_{p} \ \mathbf{V}_{p}^{-1} & (\text{non-Hermitian}) \ ['p' \text{ is the small, 'projected' matrix}] \\ \mathbf{V}_{k} &= (\mathbf{V}p \ \mathbf{V}p^{+})^{-1/2} \ \mathbf{V}p & (\text{orthonormal}) \\ \mathbf{H}_{\text{eff}} &= \mathbf{V}_{k} \ \mathbf{E}p \ \mathbf{V}_{k}^{-1} & (\text{Hermitian}) \end{split}$$

Can Solve: $H_{eff} = \Sigma_{\alpha} P_{\alpha} T_{\alpha}$ for parameters P_{α}

Reid MF., Duan CK. and Zhou HW. (2009) Crystal-field parameters from ab initio calculations. Journal of Alloys and Compounds 488: 591-594.

Example: LiYF₄:Ce³⁺

TINT

A Theoretical Study on the Structural and Energy Spectral Properties of Ce³⁺ lons Doped in Various Fluoride Compounds

Jun Wen,[†] Lixin Ning,[‡] Chang-Kui Duan,^{*,†} Yonghu Chen,[†] Yongfan Zhang,[§] and Min Yin[†]

DFT calculation using VASP. 4f energies (without spin-orbit) using AIMP embedded cluster approach [Seijo et al J. Chem. Phys. 114, 118 (2001).] SA-CASSCF calculation using MOLCAS.

		LiYF ₄					
	CF	CF + SO	exptl ^b				
	0	0	0	(4f	from Pr ³⁺)		
	196	247		Parameter	Experiment	Theory	
1	196	481			1		
4f 1				$B_0^2(4f)$	481	310	
	297	2214		$B_0^4(4f)$	-1150	-1104	
	504	2255		$B_4^4(4f)$	-1228	-1418	
	504	2409		$B_{0}^{6}(4f)$	-89	-70	
	1321	3016		$B_{4}^{6}(4f)$	-1213	-1140 + 237i	
	32389	33378	33433	$B_0^2(5d)$	4673	4312	
	40274	41142	41101	$B_0^4(5d)$	-18649	-18862	
	48640	49404	48564	$B_4^4(5d)$	-23871	-23871	
5d ¹	48640	50144	50499				
	52213	53520	52790				
	27 44431	45518	45277				

Temperature dependent infrared absorption, crystal-field and intensity analysis of $\rm Ce^{3+}~doped~LiYF_4$

Jon-Paul R. Wells^{a,b,*}, S. P. Horvath^a, Michael F. Reid^{a,c}

Optical Materials, **47**, 33 (2015)

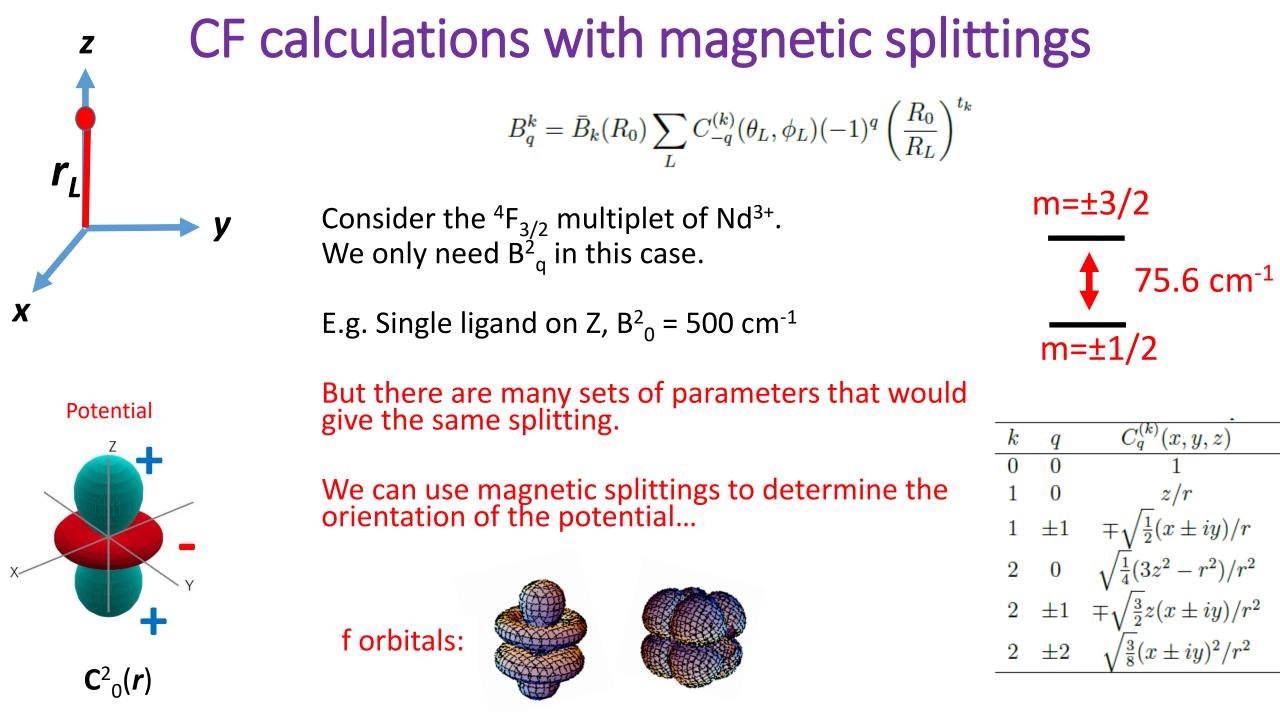
Table 1:	Experimental,	fitted,	and	$\operatorname{ab-initio}$	[21]	energy	levels
$(cm^{-1}\pm 0.1)$, ground state	g-values	for (Ce^{3+} in L	iYF4		

LU.1), groui	iu state g-values		1 11114.
State	Experiment	Fitted	Ab-initio
$Z_1\gamma_{7,8}$	0.0	1.5	0
$Z_2\gamma_{5,6}$	216	213.8	247
$Z_3\gamma_{7,8}$	-	414.4	481
$Y_1\gamma_{5,6}$	2216.1	2215.5	2214
$Y_2\gamma_{7,8}$	2312.8	2312.1	2255
$Y_3\gamma_{5,6}$	2428.8	2430.1	2409
$Y_4\gamma_{7,8}$	3157.8	3158.6	3016
g_{\parallel}	2.765	2.751	
g_{\perp}	1.473	1.514	

Table 2: Fitted and ab-initio [21] spin-orbit and S_4 symmetry crystal-field parameters (cm⁻¹) for Ce³⁺ in LiYF₄.

• P	arameters (em	, 101 00	m 11114.
	Parameter	Fitted	Ab-initio
	ζ	626	-
	B_{0}^{2}	298	310
	B_0^4	-1328	-1104
	B_4^4	-1282	-1418
	$B_0^{ ilde{6}}$	-192	-70
	$B_4^{\overline{6}}$	-1743	-1140
	$B_4^{6'}$	693	237

Note use of magnetic splittings in crystal-field fit. We now expand on this idea.



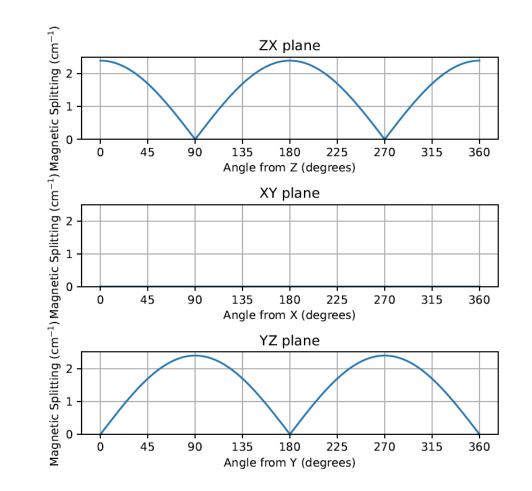
CF calculations with magnetic splittings

Single ligand on Z, B²₀ = 500 cm⁻¹ Calculate magnetic splitting of upper state: B=4T

 $\begin{array}{rcrcr}
2 & 0 & \sqrt{\frac{1}{4}}(3z^2 - r^2)/r^2 \\
2 & \pm 1 & \mp \sqrt{\frac{3}{2}}z(x \pm iy)/r^2 \\
2 & \pm 2 & \sqrt{\frac{3}{8}}(x \pm iy)^2/r^2
\end{array}$

X

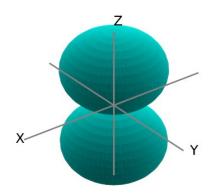
Potential $rac{r}{r}$



75.6 cm⁻¹ m=±1/2

m=±3/2

Magnetic Splitting



Change orientation!

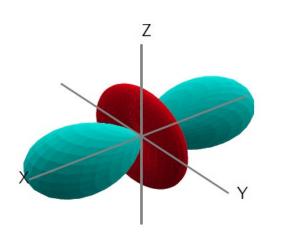
Single ligand on X, $B_0^2 = -250 \text{ cm}^{-1} B_2^2 = +306 \text{ cm}^{-1}$ Calculate magnetic splitting of upper state: B=4T

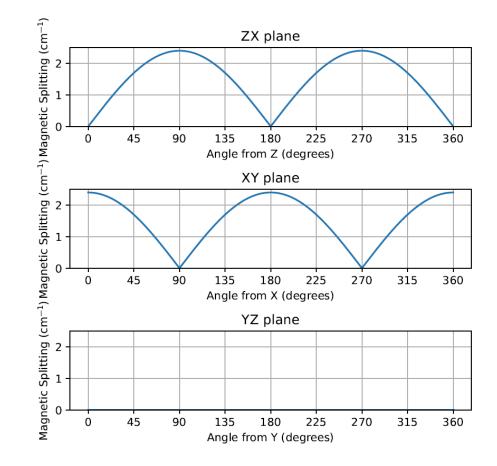
 $\begin{array}{rcrcr}
2 & 0 & \sqrt{\frac{1}{4}}(3z^2 - r^2)/r^2 \\
2 & \pm 1 & \mp \sqrt{\frac{3}{2}}z(x \pm iy)/r^2 \\
2 & \pm 2 & \sqrt{\frac{3}{8}}(x \pm iy)^2/r^2
\end{array}$

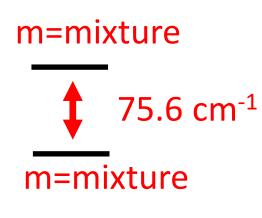
Potential

V

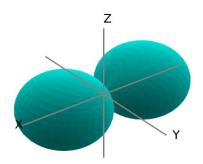
X







Magnetic Splitting



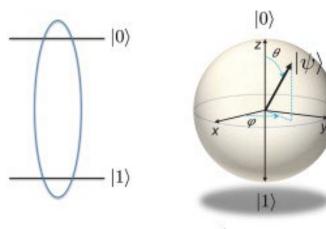
Quantum Information Applications?

 $\frac{\left|1\right\rangle+\mathfrak{i}\left|0\right\rangle}{\sqrt{2}}$

 $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

 $|0\rangle$

 $|\psi'\rangle = X |\psi\rangle$



 $\left|\psi\right\rangle = \cos(\theta/2)\left|0\right\rangle + e^{i\phi}\sin(\theta/2)\left|1\right\rangle$

 $\frac{|0\rangle+\mathfrak{t}\,|1\rangle}{\sqrt{2}}$

 $|0\rangle$

 $\frac{|0
angle + |1
angle}{\sqrt{2}}$

 $|0\rangle$

 $|1\rangle$

 $\frac{\left|0\right\rangle-\mathfrak{i}\left|1\right\rangle}{\sqrt{2}}$

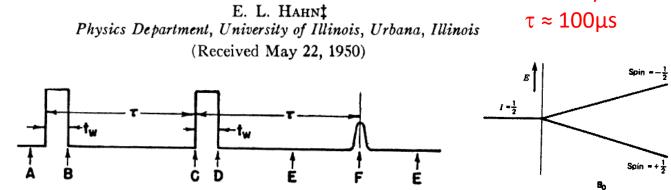


PHYSICAL REVIEW

VOLUME 80, NUMBER 4

NOVEMBER 15, 1950

Spin Echoes*†



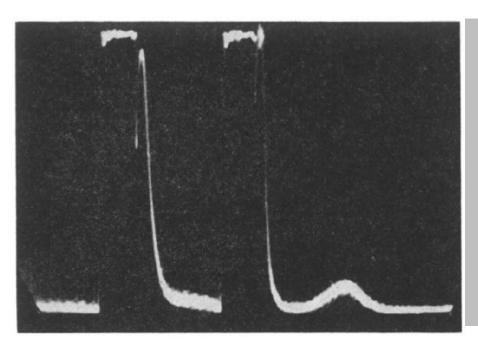
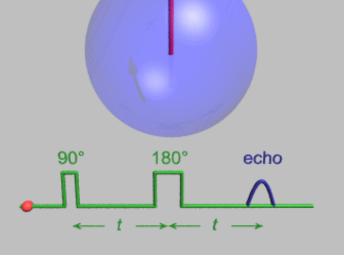


FIG. 11. Free induction signals for protons in paraffin. The echo lasts for $\sim 1.4 \times 10^{-5}$ sec. The r-f pulses, about 25 μ sec. wide, cause some blocking of the i.f. amplifier. The echo envelope decay time is also of the order of the single echo lifetime.



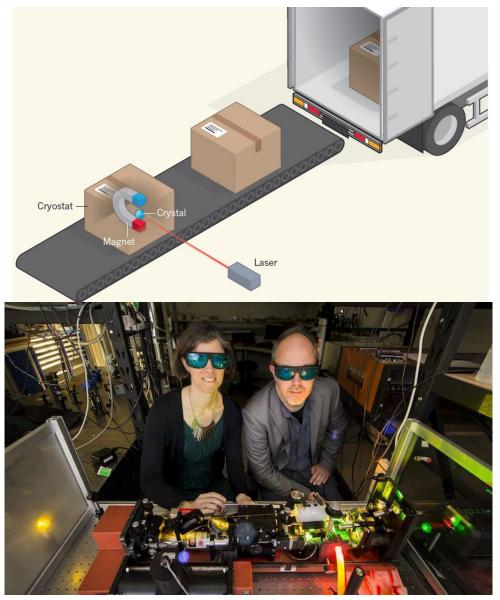
Spin Echo: Wikipedia

30MHz/0.7T

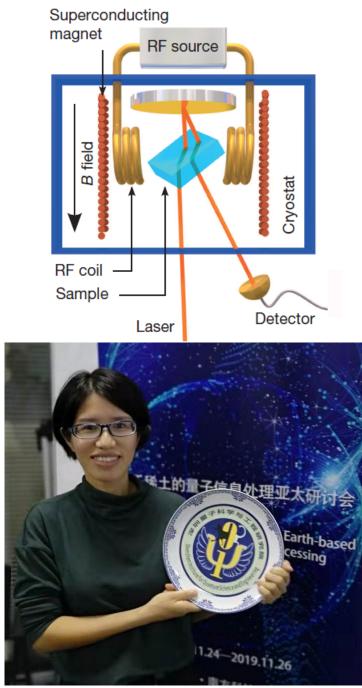
Modern NMR 600MHz/14T

(N)MRI

Six-Hour Coherence: ¹⁵¹Eu³⁺



Rose Ahlefeldt, Matt Sellars, ANU, Australia.

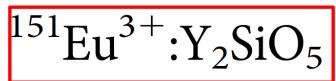


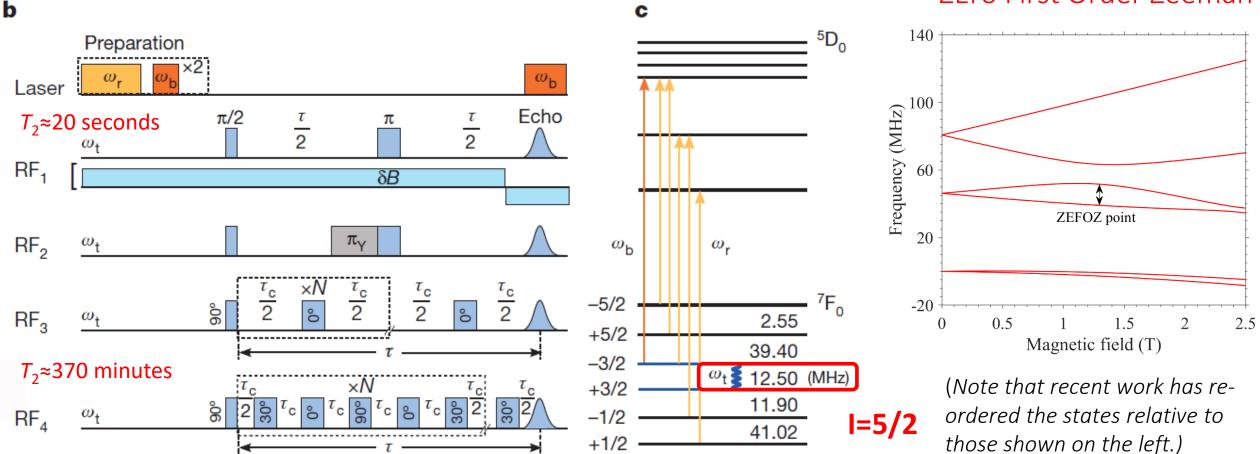
Manjin Zhong, SUSTech, Shenzhen

Optically addressable nuclear spins in a solid with a six-hour coherence time

Manjin Zhong¹, Morgan P. Hedges^{1,2}, Rose L. Ahlefeldt^{1,3}, John G. Bartholomew¹, Sarah E. Beavan^{1,4}, Sven M. Wittig^{1,5}, Jevon J. Longdell⁶ & Matthew J. Sellars¹

8 JANUARY 2015 | VOL 517 | NATURE | 177



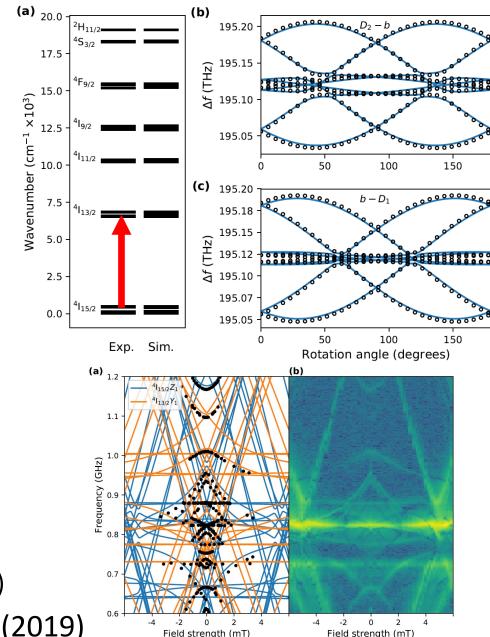


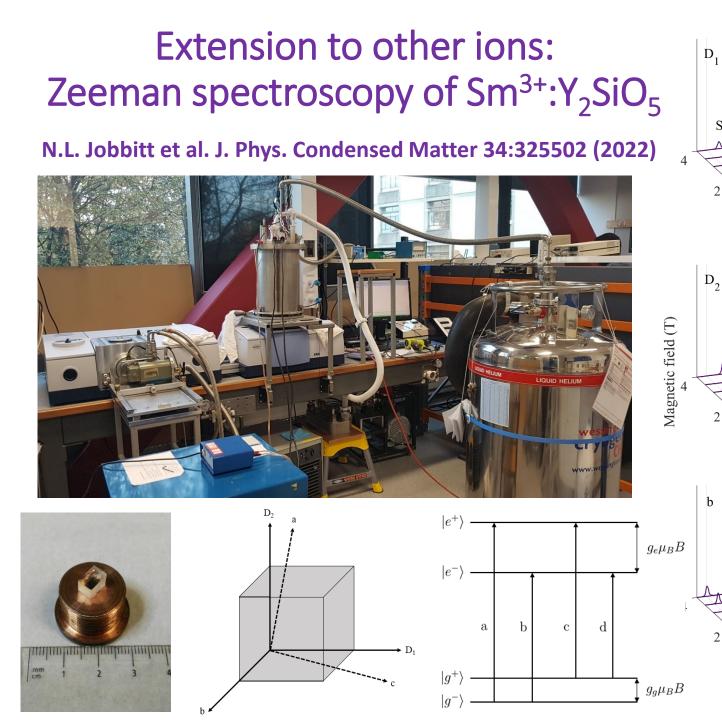
Crystal-Field Calculation for ¹⁶⁷Er³⁺:YSO Site 2

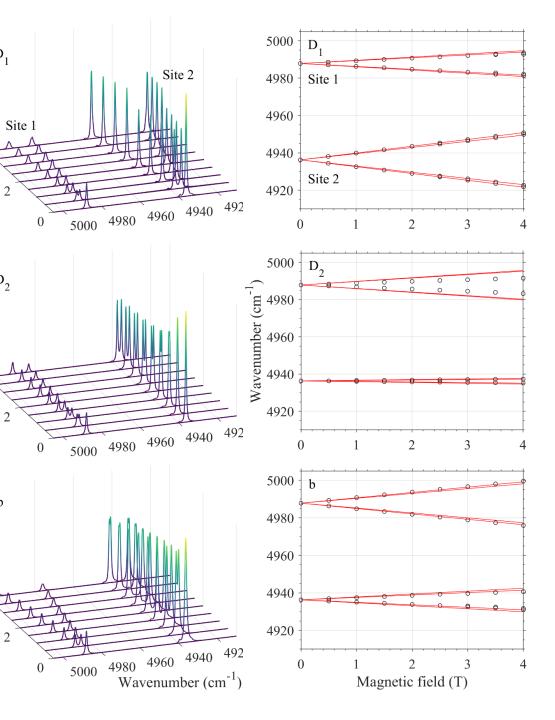
$H = H_{\rm FI} + H_{\rm CF} + H_{\rm Z} + H_{\rm HF} + H_{\rm Q}.$

- Use literature and new data for electronic energy levels, magnetic, and hyperfine splitting.
- Directional magnetic data is crucial to fixing orientation of CF Hamiltonian for low-symmetry sites.
- Separately calculate:
 - Electronic energy levels
 - Magnetic splitting for various field orientations
 - Hyperfine splitting.
- Data (Effectively 95 data points)
 - 35 Electronic energies
 - 12 Ground-state hyperfine levels
 - 12 Zeeman rotation points
 - Raman heterodyne hyperfine data (15 MHz accuracy)
- 34 Parameters (similar to spin-Hamiltonian parameter number...)

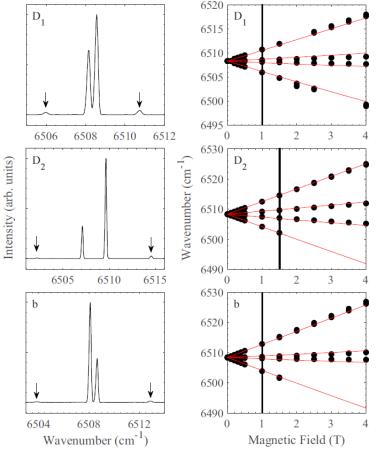
Sebastian Horvath et al. Phys. Rev. Lett. 123, 057401 (2019)

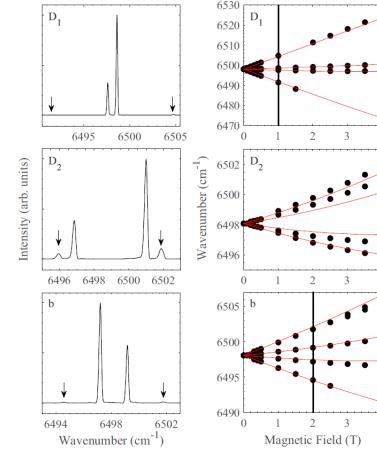






Er³⁺:YSO N.L. Jobbitt et al. Phys. Rev. B 104, 155121 (2021)





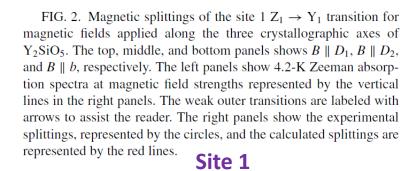
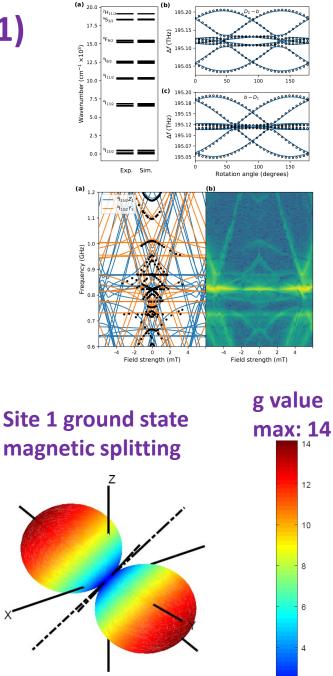


FIG. 3. Magnetic splittings of the site 2 $Z_1 \rightarrow Y_1$ transition for magnetic fields applied along the three crystallographic axes of Y_2SiO_5 . The top, middle and bottom panels shows $B \parallel D_1$, $B \parallel D_2$, and $B \parallel b$, respectively. The left panels show 4.2-K Zeeman absorption spectra at magnetic field strengths represented by the vertical lines in the right panels. The weak outer transitions are labeled with arrows to assist the reader. The right panels show the experimental splittings, represented by the circles, and the calculated splittings are represented by the red lines. Site 2



2

Er³⁺:YSO Nick Jobbitt et al. Phys. Rev. B 104, 155121 (2021)

Site 1 Site 2 Uncertainty Ref. [16] This study Ref. [18] This study Uncertainty Ref. [18] Parameter 35491.3 35503.5 35507.5 0.1 $E_{\rm avg}$ 0.1 _ F^2 95805.7 1.096029.6 95346 96121.9 1.3 95721 F^4 67869.7 67670.6 68525 67722.4 4.5 68564 3.4 F^6 53148.2 2.5 53167.1 52804 53241.2 52999 3.1 2360.5 0.12362.9 2358 2362.3 0.12356 B_{0}^{2} 6.1 -149.8-563389.0 3.7 354 -479.6 B_{1}^{2} 471.4+143.8i 2.9 + 3.0i420.6+396.0i 558+280i -325.7 - 95.8i2.7 + 3.0i498.6807+274i B_{2}^{2} 125.5 - 2.0i2.8 + 2.3i-228.5+27.6i143-121i -368.5 + 53.7i1.8 + 2.0i-75.8028+60i B_{0}^{4} -640.631.3 1131.2 -12517.215.5 226 -657.8381+593i B_{1}^{4} 288.8+924.1i 7.2 + 25.3i985.7 + 34.2i225-831i -378.7 - 519.5i5.1 + 9.3i B_{2}^{4} -273.9+320.9i296.8+145.0i 11.1 + 16.7i-48 - 945i-72.0 - 146.0i5.7 + 6.7i335.7827+253i B_{3}^{4} -873.7 - 367.8i 20.7 + 9.7i-402.3 - 381.7i-615 - 688i-890.8+570.4i9.5 + 7.3i-71.3262 - 46i B_{4}^{4} -600.8 + 1210.5i23.7 + 9.2i-282.3+1114.3i 744-102i -198.7 - 567.9i 7.8 + 5.2i-813.9654+64i B_{0}^{6} 145.7 13.2 73.4 4.3 219 -263.2-28 B_{1}^{6} -105.9 - 329.0i2.9 + 4.0i111.9+222.9i 49+199i -37.5+49.9i3.4 + 5.7i-127+197i B_{2}^{6} -119.9+164.1i 7.7 + 8.8i124.7+195.9i 120-107i 135.5+60.6i 4.5 + 1.5i-36 - 47i B_{3}^{6} 1.1+133.3i 6.7 + 4.5i-97.9+139.7i 195–55i -166.7+131.8i 2.6 + 4.0i17-108i B_4^6 -84.6+36.9i5.0 + 4.5i-93.7 - 145.0i-287 - 161i227.2+47.6i 1.2 + 3.0i-100+77i B_{5}^{6} 75.5+6.9i 4.3 + 6.6i13.9+109.5i -117 + 162i119.5+64.3i 3.7 + 3.2i-263+103i B_{6}^{6} 3.5 + 2.8i-48.5 + 118.0i6.2 + 4.2i3.0-108.6i 136+186i 37.6-41.3i 12 - 26i S^2 386.6 399.0 483.0 363.1 397.9 S^4 948.2 862.9 824.6 653.3 607.5 S^6 183.8 218.6 151.5 189.6 171.4 0.0059 0.005389 0.0069 0.005306 0.000008 0.005466 0.000012 a_l 0.0020 0.0024 0.0554 0.0716 0.0800 0.0240 0.0808 a_0

TABLE III. Fitted values for the free-ion, crystal-field and hyperfine parameters and their related uncertainties of site 1 and site 2 in Er^{3+} : Y₂SiO₅. All values are in cm⁻¹. Parameters determined by Horvath *et al.* are also included for comparison [16,18].

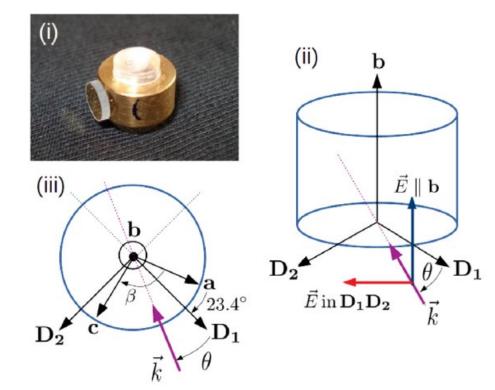
Note that 34 parameters is the same as the number of spin Hamiltonian parameters for Z1 and Y1.

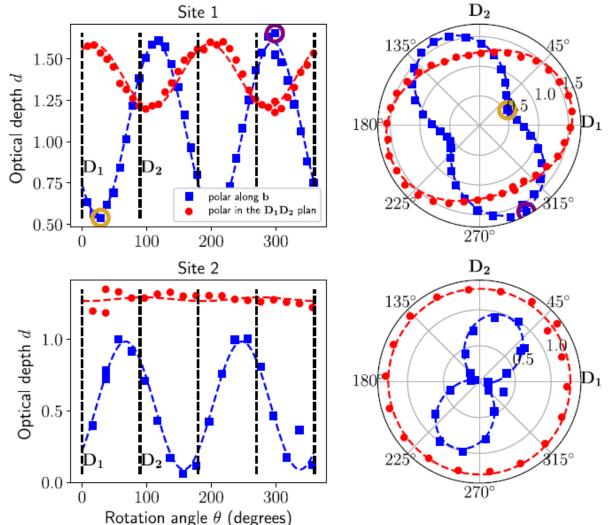
g, A, Q tensors: (6+6+5)*2

Er³⁺:Y₂SiO₅ predictions: Polarization Measurements

Polarization measurements for 1550 µm transitions Y. Petit et al. Opt. Mater. X, 8, 100062 (2020) Blue: E||b \rightarrow Magnetic dipole variation. Red: M||b \rightarrow Electric dipole variation.

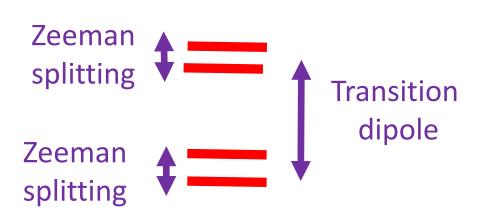
Y. Petit et al.

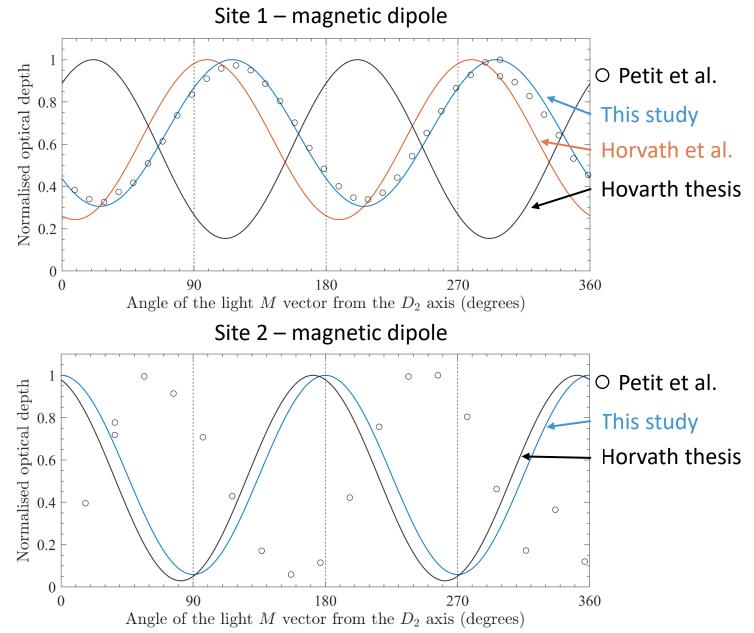




Er³⁺:Y₂SiO₅ Predictions: Polarization

- We cannot (yet) calculate electric-dipole moments in low symmetry, but can calculate magnetic dipole moments (same matrix elements as Zeeman).
- Our predictions for Site 1 have improved with more data.
- Site 2 is still out of phase... Calculation or measurement?
- Interesting that all fits reproduce Zeeman splitting, but not dipole moments between states.





Er³⁺:Y₂SiO₅ predictions: high-field hyperfine

Hyperfine structure of Site 2 1.5 μ m transition:

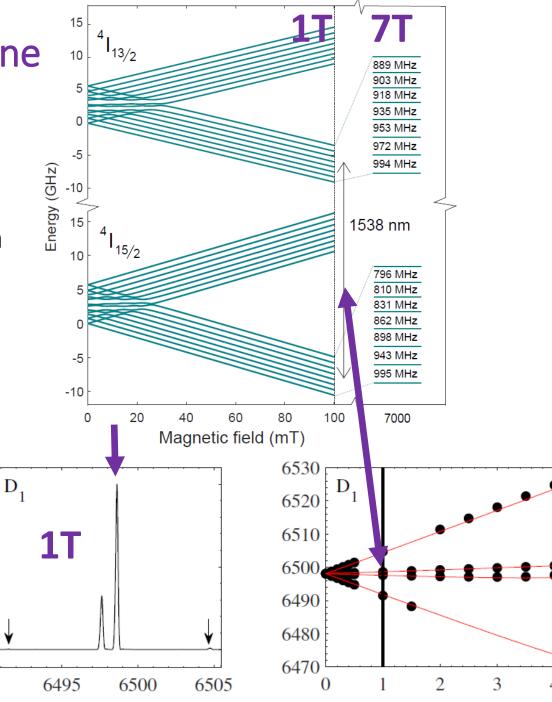
7T along D_1 .

Miloš Rančić et al. Nat. Phys., **4**, 50-54 (2018)

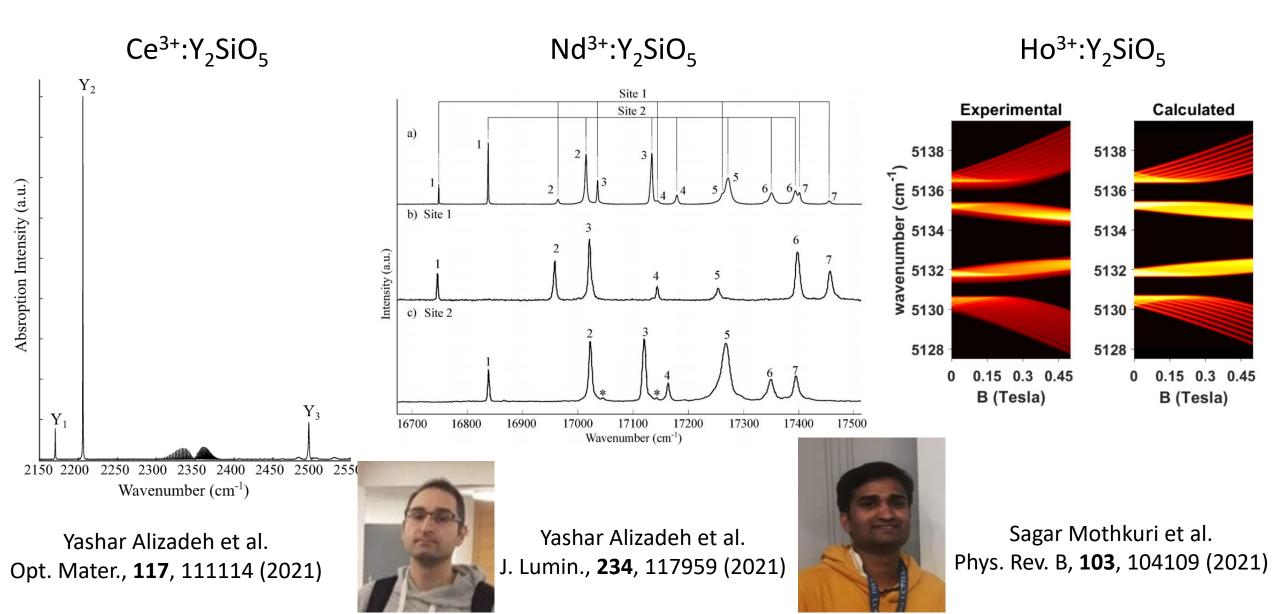
Non-linear regime where spin-Hamiltonian approach breaks down.

Unlike Site 1, our Site 2 fit does not include Y_1 hyperfine data – this is a *prediction*.

Splittings	${}^{4}\mathrm{I}_{15/2}\mathrm{Z}_{1}$		${}^{4}I_{13/2}Y_{1}$	
ΔE	This study	Ref. $[5]$	This study	Ref. $[5]$
$\Delta(1,2)$	897	995	928	994
$\Delta(2,3)$	881	943	912	972
$\Delta(3,4)$	865	898	895	953
$\Delta(4,5)$	849	862	879	935
$\Delta(5,6)$	833	831	863	918
$\Delta(6,7)$	817	810	847	903
$\Delta(7,8)$	801	796	831	889



Other work by our group on Y₂SiO₅



THE JOURNAL OF PHYSICAL CHEMISTRY

The Journal of Physical Chemistry A, 2014, 118.

Spectroscopic Distinctions between Two Types of Ce³⁺ lons in X2-Y₂SiO₅: A Theoretical Investigation

Jun Wen,^{*,†} Chang-Kui Duan,[‡] Lixin Ning,^{*,§} Yucheng Huang,[§] Shengbao Zhan,[†] Jie Zhang,[†] and Min Yin[‡]

Table 5. Calculated Principal Values of the g-Tensors for Ce³⁺ Ions in X2-YSO in Comparison with the Experimental Values for Ce³⁺ Ions in LSO

	site 1 (CN = 6)		site 2 (CN = 7)	
principal values	calcd	exptl ^a	calcd	exptl ^a
g _x	0.015	0	0.394	0.55
g_y	1.317	1.3	1.743	1.69
g_z	2.297	2.3	2.216	2.25

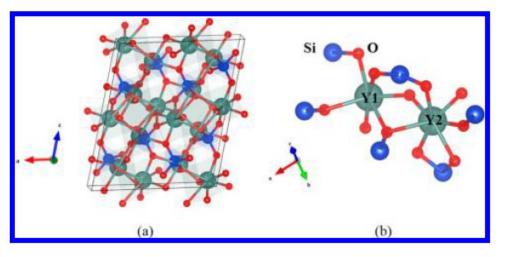
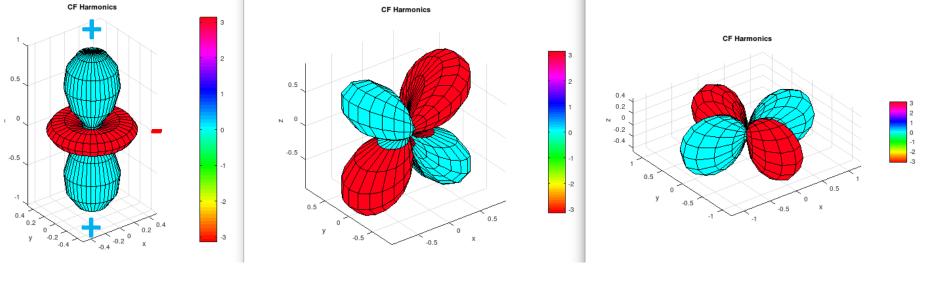


Figure 1. Schematic representations of local atomic structures around the two types of yttrium (Y1 and Y2) sites along with the unit cell of X2-YSO.

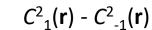
Ce³⁺ in X2-YSO

郝锐杰 (Ruijie HAO),景伟国 (Weiguo JING)* Chang-Kui Duan USTC, Hefei, China

K=2 Spherical Harmonics - Potential



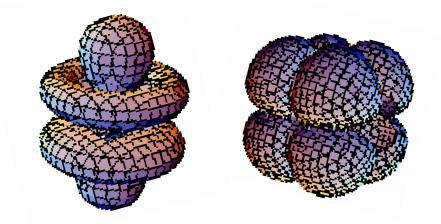
 $C_{0}^{2}(\mathbf{r})$



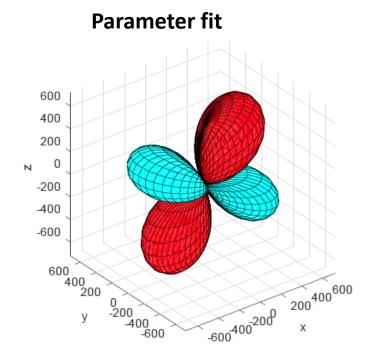
 $C_{2}^{2}(\mathbf{r}) + C_{-2}^{2}(\mathbf{r})$

 $C_0^2(\mathbf{r}) \sim 3z^2 - r^2 \sim 3\cos^2\theta - 1$, etc.

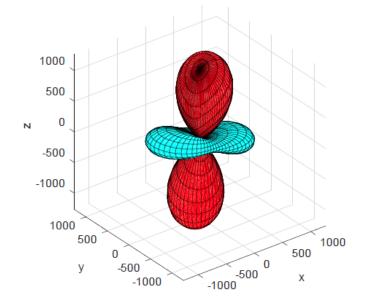
Potential acts on 4f orbitals:



Fitted and ab-initio parameters for the k=2 part of the crystal-field potential (Er³⁺:YSO, site 1).



-0.5



Ab-initio calculation

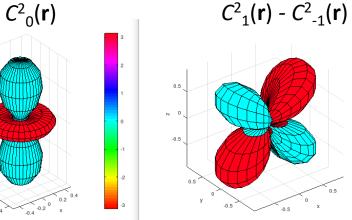
$$H_{CF} = \sum_{k,q} B_q^k C_q^{(k)}$$

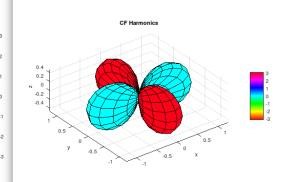
Parameter fit for Er³⁺

B20 = -479.6 B21 = 471.4+143.8i B22 = 125.5-2.0i

Ab-initio calculation for Ce³⁺

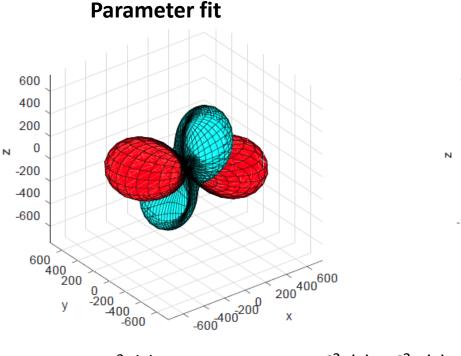
B20 =	-1162;
B21 =	362-198i;
B22 =	129+76i;



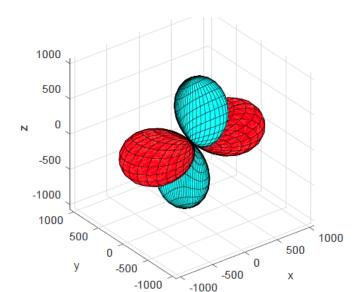


 $C_{2}^{2}(\mathbf{r}) + C_{-2}^{2}(\mathbf{r})$

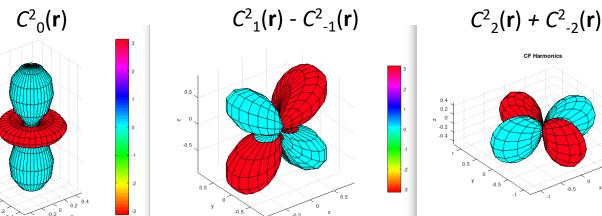
Fitted and ab-initio parameters for the k=2 part of the crystal-field potential (Er³⁺:YSO, site 2).



-0.5



Ab-initio calculation



$$H_{CF} = \sum_{k,q} B_q^k C_q^{(k)}$$

Parameter fit for Er³⁺

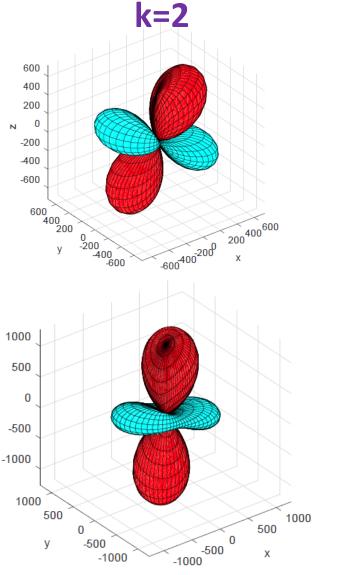
B20 = 389 B21 = -325.7-95.8i B22 = -368.5+53.7i

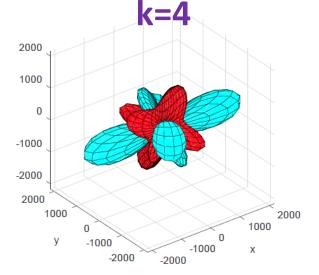
Ab-initio calculation for Ce^{3+}

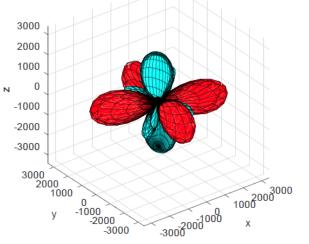
B20 = 925; B21 = -30-219i B22 = -496+46i

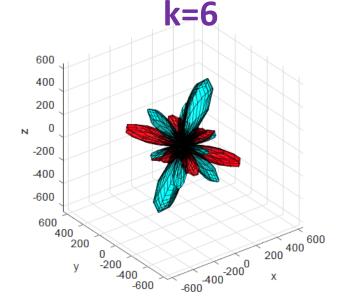
Fitted and ab-initio parameters for the k=2,4,6 parts of the crystal-field potential (Er³⁺:YSO, site 1).

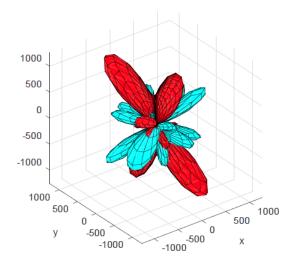
Ν



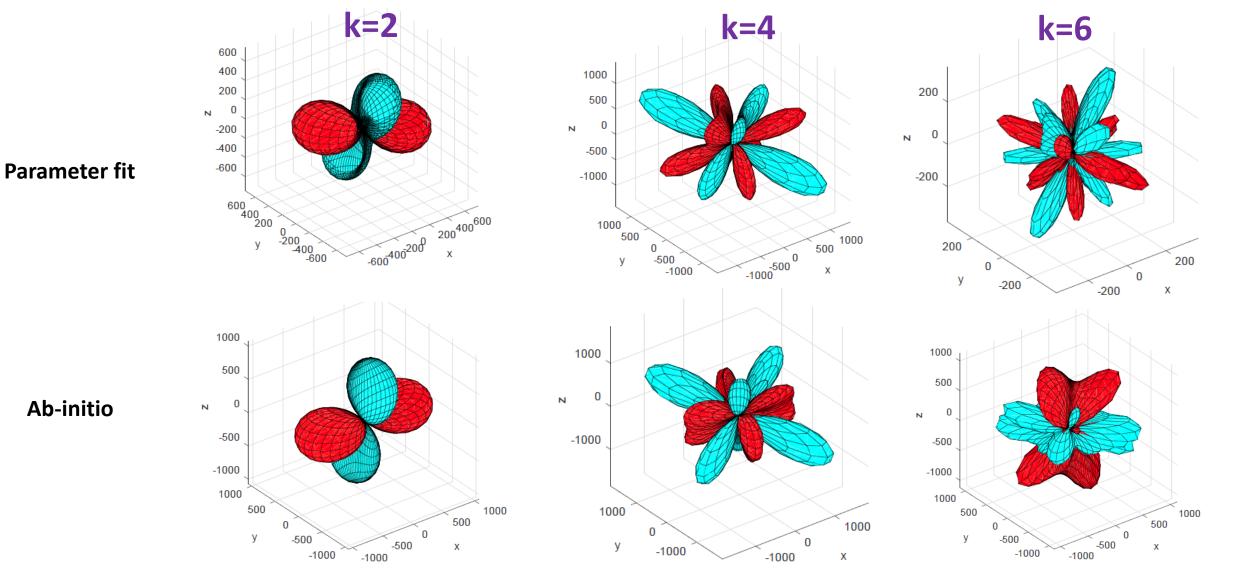






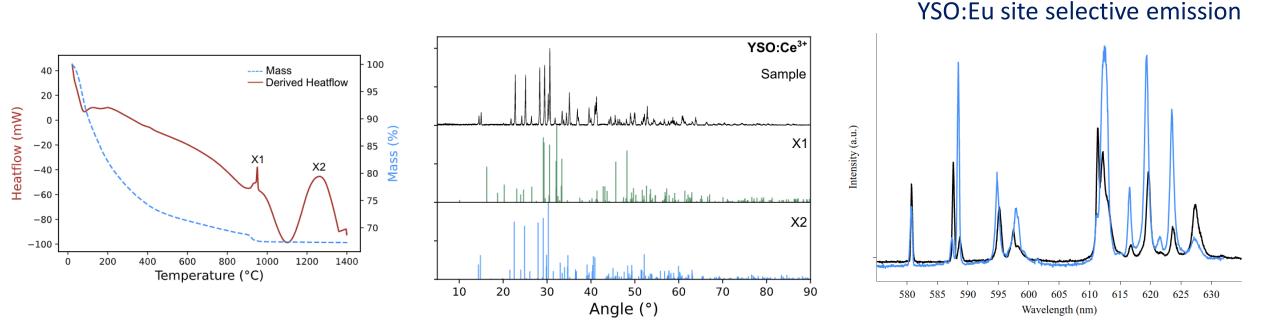


Fitted and ab-initio parameters for the k=2,4,6 part of the crystal-field potential (Er³⁺:YSO, site 2).



In Progress: Micro and nanocrystal Y₂SiO₅

- Basic laser spectroscopy of some ions, such as Ho³⁺ and Eu³⁺ are difficult at low concentrations.
- We can now make micro/nano crystals with higher concentration to do the preliminary work.
- Nano-crystals may also be useful for cavity enhancement.
- Lily Williams, Jamin Martin



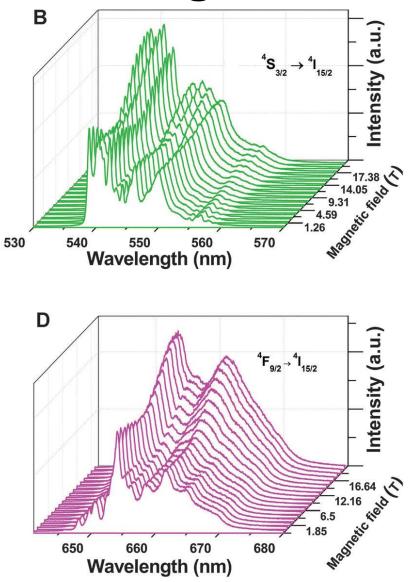
Magnetic field effects in nanoparticles Jamin Martin

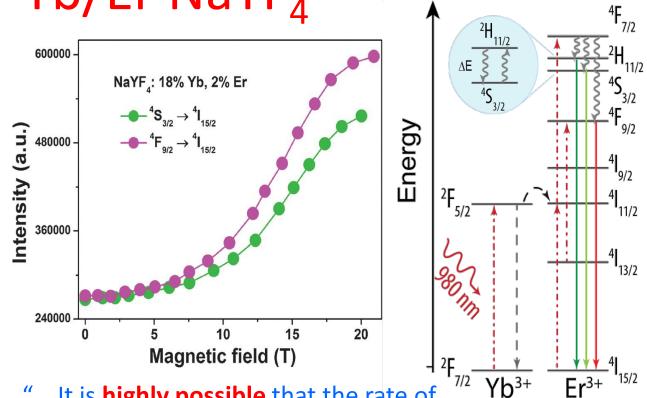
Review: Y. Luo, Z. Chen, S. Wen, Q. Han, L. Fu, L. Yan, D. Jin, J.-C. G. Bünzli, G. Bao, Magnetic regulation of the luminescence of hybrid lanthanide-doped nanoparticles, Coordination Chemistry Reviews 469 (2022) 214653

We use KY_3F_{10} , which has high symmetry (C_{4v}) and so calculations are possible of energy levels and intensities.

Magnetic Fields

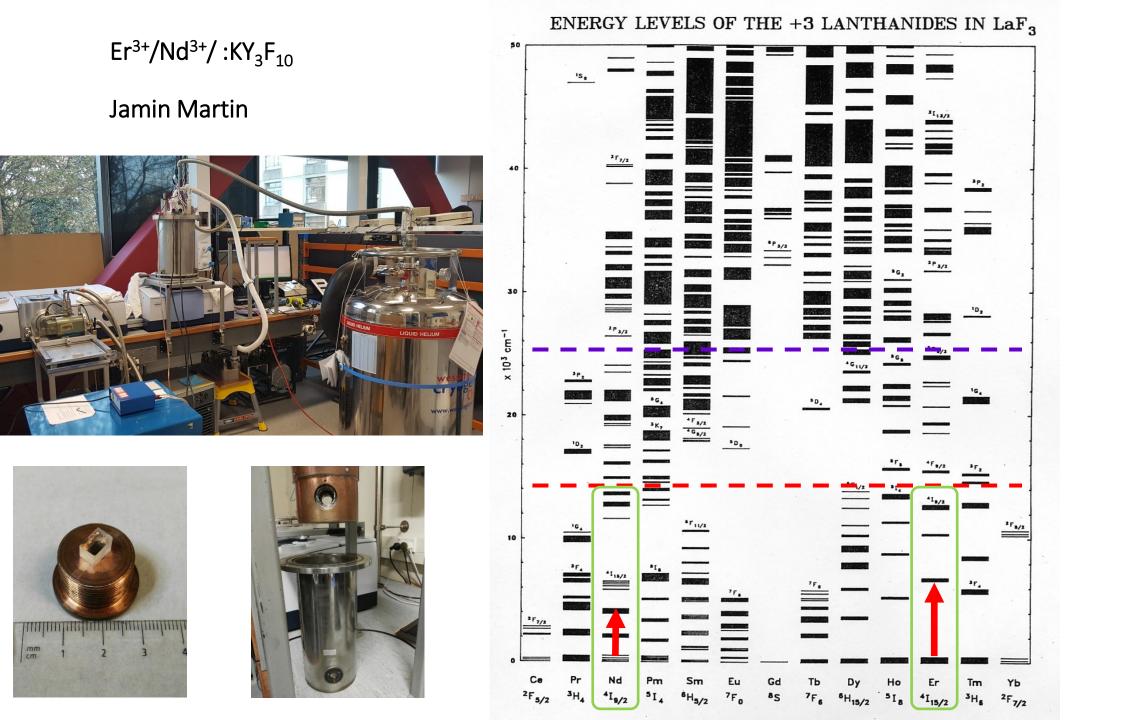
Yb/Er NaYF₄

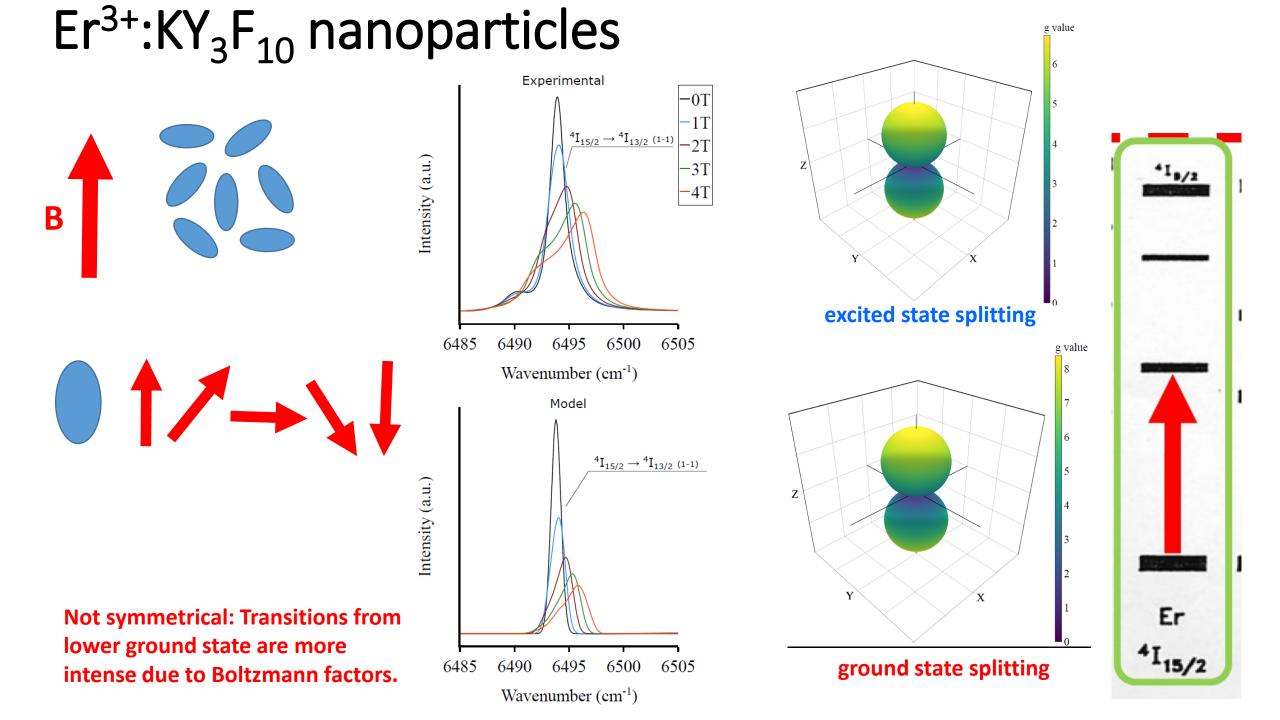


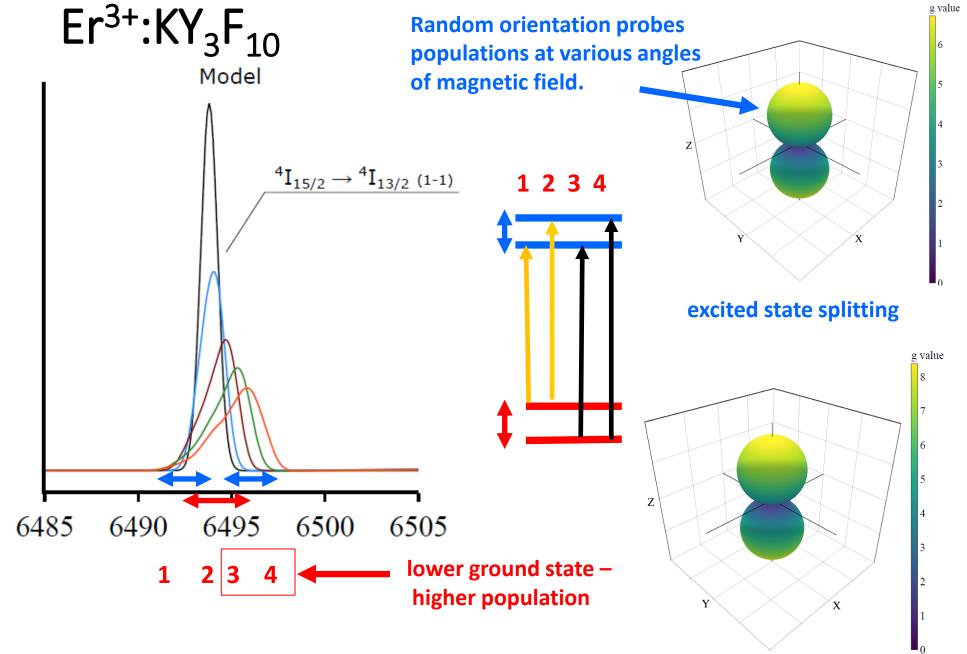


"... It is **highly possible** that the rate of excited state absorption of Er^{3+} is enhanced with magnetic field, because the energy level splitting **might** reduce the energy difference between the excitation light (975 nm) and the gap between the ⁴I_{11/2} and 4F_{7/2} levels of Er^{3+} ..."

Yb/Er NaYF₄: P. Chen et al, J. Mater. Chem. C, 2015, 3, 8794

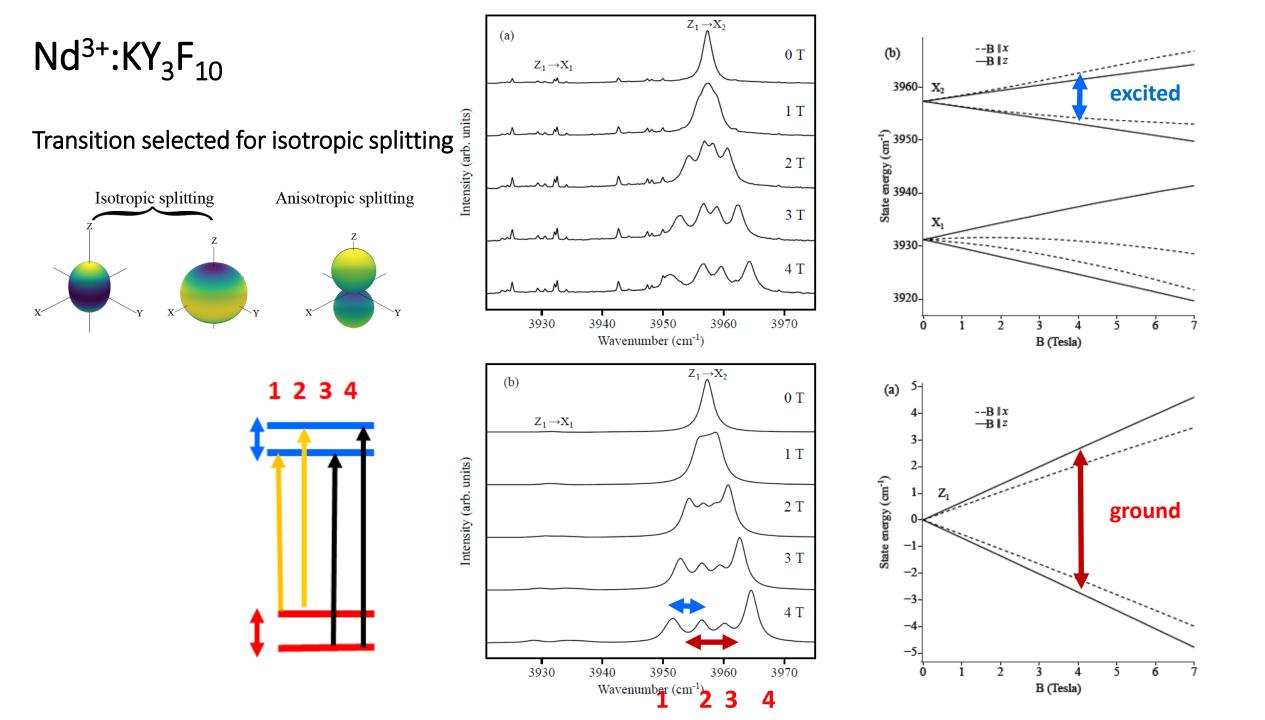




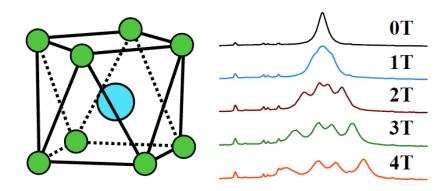


Peak splitting not at maximum possible splitting. This has to do with integral over solid angle of splitting function.

ground state splitting



Crystal-field and Zeeman interactions in lanthanide doped nanocrystals: KY_3F_{10} :Nd³⁺ Jamin L. B. Martin Jon-Paul R. Wells, Michael F. Reid



Fit including magnetic splittings gives a good reproduction in the splittings, including non-linear effects.

Jamin Martin et al. Optical Materials X, 2022, 100181.

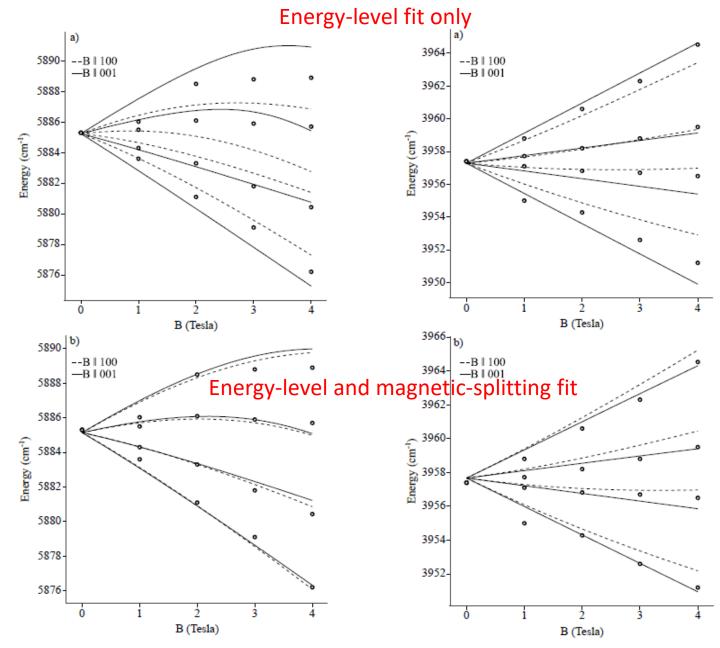


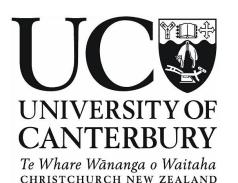
Figure 3: Calculated Zeeman splittings for the $Z_1\gamma_6 \longrightarrow W_1\gamma_7$ transition. Energies only fit (a) and energies + splittings fit (b)

Figure 4: Calculated Zeeman splittings for the $Z_1\gamma_6 \longrightarrow X_2\gamma_6$ transition. Energies only fit (a) and energies + splittings fit (b)

Tutorials on Electronic Structure

www2.phys.canterbury.ac.nz/~mfr24/ Google: Mike Reid, Personal Home Page Canterbury

mike.reid@canterbury.ac.nz



In Progress: Prediction of the hyperfine structure of ¹⁵¹Eu³⁺:Y₂SiO₅

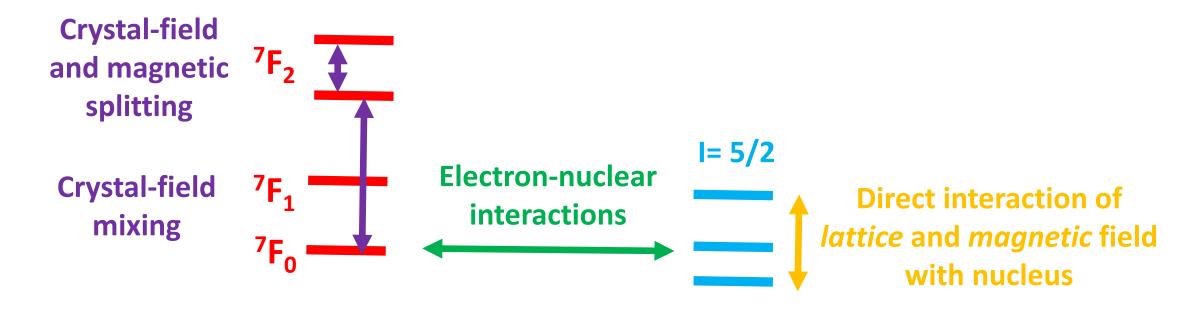
The Sm³⁺:Y₂SiO₅ parameters are scaled and fitted to predict the hyperfine structure of the ${}^{7}F_{0}$ ground state of Eu³⁺:Y₂SiO₅ (Site 1)

Spin Hamiltonian: $\mathscr{H} = \mu_B \mathbf{B} \cdot \mathbf{g} \cdot \mathbf{S} + \mathbf{I} \cdot \mathbf{A} \cdot \mathbf{S} + \mathbf{I} \cdot \mathbf{Q} \cdot \mathbf{I} - \mu_n g_n \mathbf{B} \cdot \mathbf{I}$

Contributions from

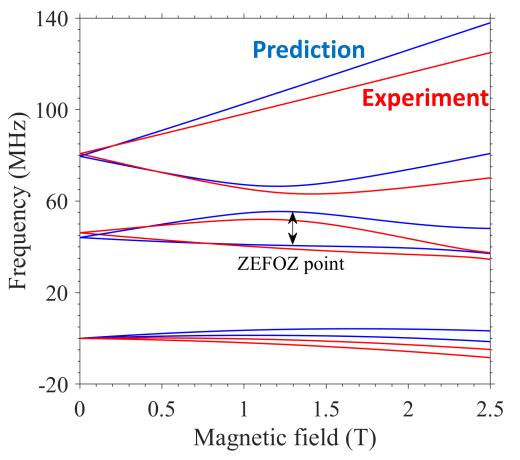
- 1. Electronic effects due to mixing of ${}^{7}F_{2}$ with ${}^{7}F_{0}$ by crystal field.
- 2. Direct interaction of lattice and magnetic field with nucleus.

See: Smith et al, Complete crystal-field calculation of Zeeman hyperfine splittings in europium. Phys. Rev. B 105: 125141



In Progress: Predictions of the hyperfine structure of ¹⁵¹Eu³⁺:Y₂SiO₅

Nuclear spin: I=5/2

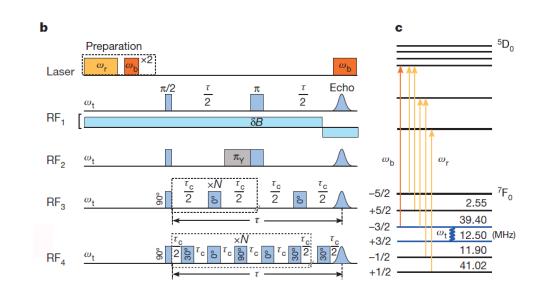


The Sm³⁺:Y₂SiO₅ parameters were scaled to predict the hyperfine structure of the ${}^{7}F_{0}$ ground state of Eu³⁺:Y₂SiO₅ (Site 1)

The experiment and prediction are for a magnetic field in the particula direction that gives the ZEFOZ point used in Zhong et al. Nature paper demonstrating six-hour coherence.

Contributions from:

- 1. Electronic effects due to mixing of ${}^{7}F_{2}$ with ${}^{7}F_{0}$ by crystal field.
- 2. Direct interaction of lattice and magnetic field with nucleus.



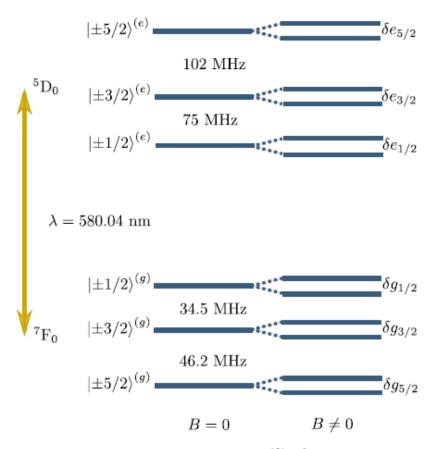


FIG. 1. The energy level structure of ${}^{151}\text{Eu}{}^{3+}$:Y₂SiO₅, without (left) and with (right) an external magnetic field *B*. The inhomogeneous broadening of the optical transition ${}^{7}\text{F}_{0} \longleftrightarrow {}^{5}\text{D}_{0}$ resonant at 580 nm contains hyperfine $m_{I} = -5/2 \cdots + 5/2$ sublevels both for the ground ${}^{7}\text{F}_{0}$ and the excited ${}^{5}\text{D}_{0}$ states. The ground state hyperfine splittings were characterized in [31].

spin Hamiltonian [29,30]

$$\mathcal{H} = \hat{I} \cdot \mathbf{Q} \cdot \hat{I} + \vec{B} \cdot \mathbf{M} \cdot \hat{I} + (\vec{B} \cdot \mathbf{Z} \cdot \vec{B})\mathbb{1}.$$
 (2)

In this expression, the first term corresponds to the quadrupole interaction and is responsible for a partial lifting of the nuclear-spin states degeneracy in both the ground and the excited states for the I = 5/2 nuclear spin of europium (see Fig. 1, left). In general, this term includes pure quadrupolar and pseudoquadrupolar contributions [29]. The second term describes the Zeeman interaction and results in nondegenerate hyperfine levels in the presence of a magnetic field (see Fig. 1, right). The third term is the quadratic Zeeman interaction, which we neglect since it does not contribute to the admixtures of the eigenstates. The labels used for the hyperfine levels in Fig. 1 are only approximate, since m_I is not a good quantum number.

As the energy splittings due to \mathcal{H} are very small compared to the optical transition, this term can be seen as a perturbation of the whole Hamiltonian. Two hyperfine Hamiltonians can be defined: one for the ground state $\mathcal{H}^{(g)}$ and one for the excited state $\mathcal{H}^{(e)}$. The hyperfine ground state Hamiltonian has already been determined in a previous work [31]. We are thus interested in the present work in characterizing the Hamiltonian of the excited state and its orientation with respect to the ground state Hamiltonian. This is done by determining experimentally $\mathbf{Q}^{(e)}$ and $\mathbf{M}^{(e)}$, that is, the quadrupole and Zeeman tensors of the excited state hyperfine Hamiltonian.

B. Symmetry considerations in Y₂SiO₅

⁵D₀ Almost purely quadrupole from lattice.

Same principal axes for all doublets.

 ${}^{7}F_{0}$ Quadrupole from lattice + CF mixing from ${}^{7}F_{2} + {}^{7}F_{4}$

Different principal axes for the doublets.

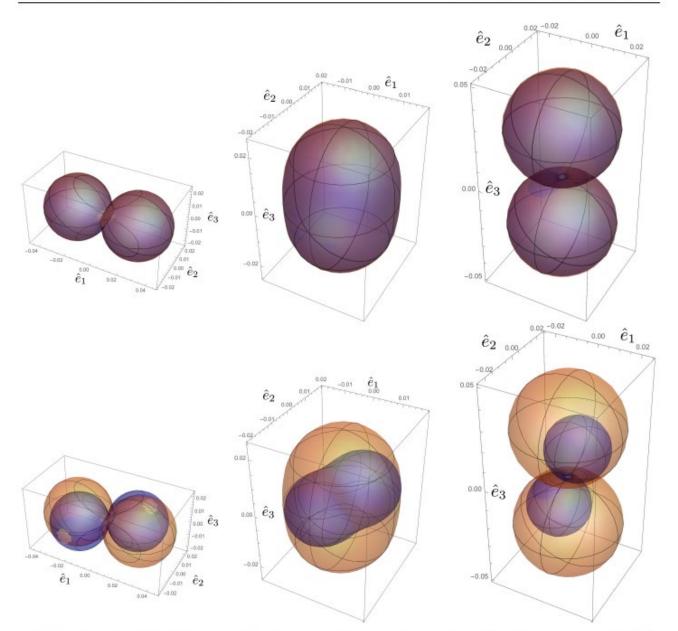


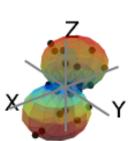
FIG. 7. Spherical plot (violet) of the energy splitting for the ground (three figures below) and excited (three figures above) states, $\delta_k/(2|\vec{B}|)$, in natural units for k = 1/2, 3/2, and 5/2 (from left to right) as a function of $\vec{n}(\theta, \phi) = \vec{B}/|\vec{B}|$). The orange plot is the hypothetical energy splitting if M were isotropic (i.e., $M \propto 1$), which is almost the case for excited state (and, hence, there the orange plot is basically covered by the violet one). The coordinate system is the eigenbasis of $\mathbf{Q}^{(e)}$ or $\mathbf{Q}^{(g)}$, respectively.

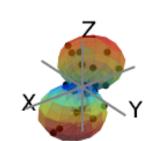
SH ⁵D₀,1: 1.39e-05

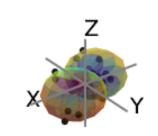
CF ⁵D₀,1: 1.46e-05

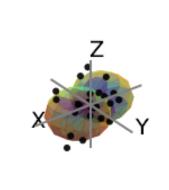
SH ⁷F₀, 1: 1.05e-05

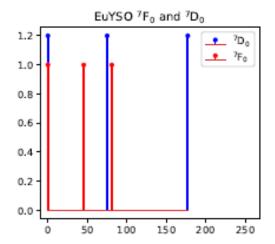
CF ⁷F₀,1: 9.20e-06









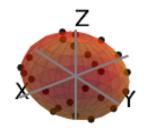


SH 5D0,2: 7.54e-06

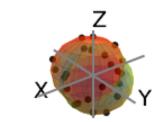
CF 5D0,2: 7.85e-06

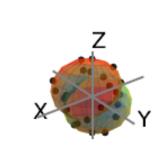
SH ⁷F₀, 2: 7.02e-06

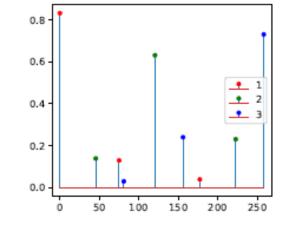
CF ⁷F₀,2: 7.22e-06



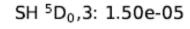
Z Z

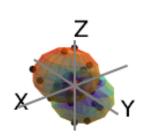


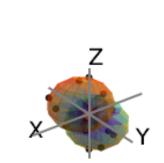




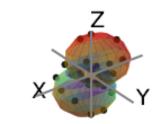
0.8 0.6 0.4 0.2 0.0 0.50 100 150 200 250 Energy, MHz





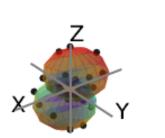


CF ⁵D₀,3: 1.56e-05



SH ⁷F₀, 3: 1.44e-05

CF ⁷F₀,3: 1.39e-05



Conclusions

- Crystal-field modelling for several rare-earth ions: Ce³⁺, Nd³⁺, Sm³⁺, Ho³⁺, Er³⁺ in Y₂SiO₅ (YSO).
- Other groups include Yb³⁺: Zhou et al. Inorganic Chemistry 59:13144 (2020).
- Due to the C₁ symmetry, directional magnetic data is required to determine unique sets of parameters. [May still not be unique!]
- Parameters can be scaled between ions.
- Prediction of polarization and high-field hyperfine structure for Er³⁺:Y₂SiO₅.
- In progress:
 - Comparison with ab-initio calculations.
 - Micro and nanocrystals.
 - Prediction of magnetic-hyperfine structure for Eu³⁺:Y₂SiO₅
 - Work on other ions.

