Making Sense of Rare Earth Electronic Structure. A Tutorial.

Sydney, June 2023
Mike Reid
University of Canterbury
Christchurch
New Zealand
mike.reid@canterbury.ac.nz

Te Whal Ao Dodd-Walls Centre

for Photonic and Quantum Technologies

Christchurch, New Zealand

Ȧrs. LIX.—Magnetization of Iron by High-frequency Discharges.
By E. Rutherford, M.A.
[Read before the Philosophical Institute of Canterbury, 7th November, 1894.]

Ernest Rutherford building, 2018

Brian Wybourne. PhD 1960. Later Professor of Physics

B. G. Wybourne

Judd Ofelt Wybourne

Optical and Magnetic Properties of some Transition Ion
 Complexes. PhD 1963

R. M. Macfarlane

Physics Department
University of Canterbury. linhacjarlane.

SUB-KILOHERTZ OPTICAL LINEWIDTHS OF THE ${ }^{\mathbf{7}} \mathrm{F}_{\mathbf{0}} \leftrightarrow{ }^{5} \mathrm{D}_{\mathbf{0}}$ TRANSITION IN $\mathbf{Y}_{\mathbf{2}} \mathbf{O}_{\mathbf{3}}$: $\mathrm{Eu}^{\mathbf{3 +}}$
R.M. MACFARLANE and R.M. SHELBY

IBM Research Laboratory, San Jose, CA 95193, USA

Received 17 June 1981

Homogeneous optical linewidths as small as 760 Hz (fwhm) have been observed in $\mathrm{Y}_{2} \mathrm{O}_{3}: \mathrm{Eu}^{3+}$ using delayed heterodyne photon echoes. Hyperfine and lifetime contributions to dephasing are estimated to contribute $<300 \mathrm{~Hz}$ to this width, and the remainder is attributed to quasi-resonant energy transfer.

Lanthanide (Rare Earth) 3+ ground state: $5 s^{2} 5 p^{6} 4 f^{N} 5 d^{0}$

Modelling the $4 \mathrm{f}^{\mathrm{N}}$ structure of rare-earth doped crystals

$$
H_{C F}=\sum_{k, q} B_{q}^{k} C_{q}^{(k)}
$$

C_{1} symmetry $\rightarrow 27$ crystal-field parameters

Zeeman
$H_{z}=\mu_{\boldsymbol{B}} \boldsymbol{B} \cdot(\boldsymbol{L}+2 \boldsymbol{S})$ Magnetic field can be experimentally varied.

Hyperfine
$H_{H F}=A \boldsymbol{N} \cdot \mathbf{I}+Q H_{Q}$ A and Q are parameters

$\mathrm{Eu}^{3+}{ }^{7} \mathrm{~F}_{0}$ and ${ }^{5} \mathrm{D}_{0}$: electronic effects are small so Direct interaction of nucleus with magnetic field and lattice are important.

Understanding the energy levels: $4 \mathrm{f}^{\mathrm{N}}$

Parameter trends across the lanthanide series.

C-K Duan and P A Tanner, J. Phys. Chem. A, 2010, 114, pp 6055-6062

Angular momentum states and tensor operators

$$
\left[J_{x}, J_{y}\right]=i J_{z}, \quad \mathbf{J}^{2} \equiv J_{x}^{2}+J_{y}^{2}+J_{z}^{2}
$$

Rather than classifying
states by eigenvalues and operators by commutators, it is helpful to classify both in terms of behaviour under rotations.

$$
\begin{aligned}
{\left[J_{z}, T_{q}^{(k)}\right] } & =q T_{q}^{(k)} \\
D(R) T_{q}^{(k)} D(R)^{\dagger} & =\sum_{q^{\prime}} D_{q^{\prime} q}^{(k)}(R) T_{q^{\prime}}^{(k)}
\end{aligned}
$$

Wigner-Eckart theorem

$$
\begin{aligned}
&\langle\alpha J M| T_{q}^{(k)}\left|\alpha^{\prime} J^{\prime} M^{\prime}\right\rangle=(-1)^{J-M}\left(\begin{array}{ccc}
J & k & J^{\prime} \\
-M & q & M^{\prime}
\end{array}\right)\left\langle\alpha J\left\|T^{(k)}\right\| \alpha^{\prime} J^{\prime}\right\rangle . \\
&\langle\alpha J M| T_{q}^{(k)}\left|\alpha^{\prime} J^{\prime} M^{\prime}\right\rangle=\left\langle J^{\prime} M^{\prime}, k q \mid J M\right\rangle \frac{1}{\sqrt{2 J+1}}\left\langle\alpha, J\left\|T^{(k)}\right\| \alpha^{\prime}, J^{\prime}\right\rangle \\
& \text { Matrix element }=\quad 3 \text { j symbol or Clebsch-Gordan coefficient } \quad \text { x } \begin{array}{c}
\text { Reduced matrix element } \\
\text { "geometry" }
\end{array}
\end{aligned}
$$

Selection rules: $\quad M^{\prime}+q=M$ and $\left|J-J^{\prime}\right| \leq k \leq J+J^{\prime}$.

The easiest proof is to recall that operators transform as kets. We can therefore couple the operator and ket (up to a possible normalization):

$$
\left|\alpha^{\prime \prime}, J^{\prime \prime} M^{\prime \prime}\right\rangle \propto \sum_{q, M^{\prime}} T_{q}^{(k)}\left|\alpha^{\prime} J^{\prime} M^{\prime}\right\rangle\left\langle k q, J^{\prime} M^{\prime} \mid J^{\prime \prime} M^{\prime \prime}\right\rangle
$$

We can use orthogonality to obtain an expression for $T_{q}^{(k)}\left|\alpha^{\prime} J^{\prime} M^{\prime}\right\rangle$ and derive the result.

Spherical Harmonics and Spherical Tensors

$$
{ }_{x}^{x}(r, \theta, \varphi)
$$

$$
\begin{aligned}
& Y_{l m}(\theta, \phi)=\sqrt{\frac{2 l+1}{4 \pi}} \sqrt{\frac{(l-m)!}{(l+m!)}} P_{l m}(\cos \theta) e^{i m \phi} \\
& C_{q}^{(k)}(\hat{\mathbf{r}})=C_{q}^{(k)}(\theta, \phi)=\sqrt{\frac{4 \pi}{2 k+1}} Y_{k q}(\theta, \phi) \\
& \begin{array}{cccc}
\hline k & q & C_{q}^{(k)}(x, y, z) & C_{q}^{(k)}(\theta, \phi) \\
\hline 0 & 0 & 1 & 1 \\
1 & 0 & z / r & \cos \theta
\end{array} \\
& 1 \pm 1 \quad \mp \sqrt{\frac{1}{2}}(x \pm i y) / r \quad \mp \sqrt{\frac{1}{2}} \sin \theta e^{ \pm i \phi} \\
& 20 \\
& \sqrt{\frac{1}{4}}\left(3 z^{2}-r^{2}\right) / r^{2} \\
& \sqrt{\frac{1}{4}}\left(3 \cos ^{2} \theta-1\right) \\
& 2 \pm 1 \quad \mp \sqrt{\frac{3}{2}} z(x \pm i y) / r^{2} \quad \mp \sqrt{\frac{3}{2}} \cos \theta \sin \theta e^{ \pm i \phi} \\
& \begin{array}{lll}
2 & \pm 2 & \sqrt{\frac{3}{8}}(x \pm i y)^{2} / r^{2} \\
\sqrt{\frac{3}{8}} \sin ^{2} \theta e^{ \pm 2 i \phi} \\
\hline
\end{array}
\end{aligned}
$$

Electric and Magnetic Dipoles

k	q	$C_{q}^{(k)}(x, y, z)$
0	0	1
1	0	z / r

$$
-e \mathbf{r}=-e r \mathbf{C}^{(1)} \quad 1 \pm 1 \quad \mp \sqrt{\frac{1}{2}}(x \pm i y) / r
$$

$$
x=r \frac{1}{\sqrt{2}}\left(-C_{1}^{(1)}+C_{-1}^{(1)}\right), \quad y=r \frac{i}{\sqrt{2}}\left(C_{1}^{(1)}+C_{-1}^{(1)}\right), \quad z=r C_{0}^{(1)}
$$

$$
\begin{array}{ccc}
2 & 0 & \sqrt{\frac{1}{4}}\left(3 z^{2}-r^{2}\right) / r^{2} \\
2 & \pm 1 & \mp \sqrt{\frac{3}{2}} z(x \pm i y) / r^{2}
\end{array}
$$

$$
x
$$

$$
y
$$

$$
Z
$$

$$
\mathbf{B} \cdot \mathbf{J}=\sum_{i=x, y, z} B_{i} J_{i}
$$

$$
J_{x}=r \frac{1}{\sqrt{2}}\left(-J_{1}^{(1)}+J_{-1}^{(1)}\right), \quad J_{y}=r \frac{i}{\sqrt{2}}\left(J_{1}^{(1)}+J_{-1}^{(1)}\right), \quad J_{z}=r J_{0}^{(1)}
$$

Crystal Field Potential

$$
\begin{aligned}
& Y_{l m}(\theta, \phi)=\sqrt{\frac{2 l+1}{4 \pi}} \sqrt{\frac{(l-m)!}{(l+m!)}} P_{l m}(\cos \theta) e^{i m \phi} \\
& C_{q}^{(k)}(\hat{\mathbf{r}})=C_{q}^{(k)}(\theta, \phi)=\sqrt{\frac{4 \pi}{2 k+1}} Y_{k q}(\theta, \phi)
\end{aligned}
$$

k	q	$C_{q}^{(k)}(x, y, z)$	$C_{q}^{(k)}(\theta, \phi)$
0	0	1	1
1	0	z / r	$\cos \theta$
1	± 1	$\mp \sqrt{\frac{1}{2}}(x \pm i y) / r$	$\mp \sqrt{\frac{1}{2}} \sin \theta e^{ \pm i \phi}$
2	0	$\sqrt{\frac{1}{4}}\left(3 z^{2}-r^{2}\right) / r^{2}$	$\sqrt{\frac{1}{4}}\left(3 \cos ^{2} \theta-1\right)$
2	± 1	$\mp \sqrt{\frac{3}{2}} z(x \pm i y) / r^{2}$	$\mp \sqrt{\frac{3}{2}} \cos \theta \sin \theta e^{ \pm i \phi}$
2	± 2	$\sqrt{\frac{3}{8}}(x \pm i y)^{2} / r^{2}$	$\sqrt{\frac{3}{8}} \sin ^{2} \theta e^{ \pm i \phi}$

Note: Potential is real. Phases of parameters determine orientation, e.g. $e^{i q \phi}$
$\mathrm{C}^{2}{ }_{0}(r)$
$\mathrm{C}^{2}{ }_{1}(r)-\mathrm{C}^{2}{ }_{-1}(r)$
$\mathbf{C}_{2}^{2}(\boldsymbol{r})+\mathbf{C}_{-2}^{2}(\boldsymbol{r})$

Coulomb interaction and crystal field: Addition theorem

$$
\begin{aligned}
\frac{1}{r_{12}} & =\sum_{k=0}^{\infty} \frac{r_{r}^{k}}{r_{1}^{k+1}} P_{k}(\cos \omega) \quad \cos \omega:-1 . .1 \\
& =\sum_{k=0}^{\infty} \frac{r_{12}^{k}}{r_{2}^{k+1}} \mathbf{C}^{(k)}\left(\hat{\mathbf{r}}_{1}\right) \cdot \mathbf{C}^{(k)}\left(\hat{\mathbf{r}}_{2}\right) \\
& =\sum_{k=0}^{\infty} \frac{r_{c}^{k}}{r_{2}^{k+1}} \sum_{q=-k}^{+k} C_{q}^{(k)}\left(\hat{\mathbf{r}}_{1}\right) C_{-q}^{(k)}\left(\hat{\mathbf{r}}_{2}\right)(-1)^{q} .
\end{aligned}
$$

Legendre Polynomials orthogonal: -1.. 1

\boldsymbol{k}	$\boldsymbol{P}_{\boldsymbol{k}}$
0	1
1	x
2	$\left(3 x^{2}-1\right) / 2$

k	q	$C_{q}^{(k)}(x, y, z)$
0	0	1
1	0	z / r
1	± 1	$\mp \sqrt{\frac{1}{2}}(x \pm i y) / r$
2	0	$\sqrt{\frac{1}{4}}\left(3 z^{2}-r^{2}\right) / r^{2}$
2	± 1	$\mp \sqrt{\frac{3}{2}} z(x \pm i y) / r^{2}$
2	± 2	$\sqrt{\frac{3}{8}}(x \pm i y)^{2} / r^{2}$

Addition Theorem - Example

Legendre Polynomials

$$
\text { orthogonal: -1.. } 1
$$

$z=+1$

$$
1 / r_{12}=1 / 3 \quad \cos \omega=\cos \pi=-1
$$

\boldsymbol{k}	$\boldsymbol{P}_{\boldsymbol{k}}$
0	1
1	x
2	$\left(3 x^{2}-1\right) / 2$

$r_{1}{ }^{4} \omega=\pi$

$$
\begin{aligned}
\frac{1}{r_{12}} & =\sum_{k=0}^{\infty} \frac{r_{<}^{k}}{r_{>}^{k+1}} P_{k}(\cos \omega) \\
& =\frac{1^{0}}{2^{1}} \times(1)+\frac{1^{1}}{2^{2}} \times(-1)+\frac{1^{2}}{2^{3}} \times\left(\frac{1}{2}\left(3 \times(-1)^{2}-1\right)\right)+\ldots \\
& =\frac{1}{2}-\frac{1}{4}+\frac{1}{8}+\ldots
\end{aligned}
$$

k	q	$C_{q}^{(k)}(x, y, z)$
0	0	1
1	0	z / r
1	± 1	$\mp \sqrt{\frac{1}{2}}(x \pm i y) / r$
2	0	$\sqrt{\frac{1}{4}}\left(3 z^{2}-r^{2}\right) / r^{2}$
2	± 1	$\mp \sqrt{\frac{3}{2}} z(x \pm i y) / r^{2}$
2	± 2	$\sqrt{\frac{3}{8}}(x \pm i y)^{2} / r^{2}$

$z=-2$

$$
\begin{aligned}
& =\frac{1^{0}}{2^{1}} \times 1 \times 1+\frac{1^{1}}{2^{2}} \times(+1) \times(-1)+\frac{1^{2}}{2^{3}} \times\left(\left(\sqrt{\frac{1}{4}}(3-1)\right) \times\left(\sqrt{\frac{1}{4}}(3-1)\right)\right)+. \\
& =\frac{1}{2}-\frac{1}{4}+\frac{1}{8}+\ldots
\end{aligned}
$$

Coulomb Interaction

$$
\begin{aligned}
\boldsymbol{r}_{1} & =\sum_{12}^{\infty} \frac{r_{<}^{k}}{r_{12}} P_{k=0}^{k+1}(\cos \omega) \\
& =\sum_{k=0}^{\infty} \frac{r_{<}^{k}}{r_{>}^{k+1}} \mathbf{C}^{(k)}\left(\hat{\mathbf{r}}_{1}\right) \cdot \mathbf{C}^{(k)}\left(\hat{\mathbf{r}}_{2}\right) \\
\boldsymbol{r}_{\mathbf{2}} & =\sum_{k=0}^{\infty} \frac{r_{<}^{k}}{r_{>}^{k+1}} \sum_{q=-k}^{+k} C_{q}^{(k)}\left(\hat{\mathbf{r}}_{1}\right) C_{-q}^{(k)}\left(\hat{\mathbf{r}}_{2}\right)(-1)^{q} \\
H_{\mathrm{Coulomb}} & =\frac{e^{2}}{4 \pi \epsilon_{0}} \sum_{k}^{\text {even }} \sum_{i<j} \frac{r_{<}^{k}}{r_{>}^{k+1}}\left[\mathbf{C}^{(k)}\left(\hat{\mathbf{r}}_{i}\right) \cdot \mathbf{C}^{(k)}\left(\hat{\mathbf{r}}_{j}\right)\right] \\
& =\sum_{k}^{\text {even }} F^{k}\left[\sum_{i<j} \mathbf{C}^{(k)}\left(\hat{\mathbf{r}}_{i}\right) \cdot \mathbf{C}^{(k)}\left(\hat{\mathbf{r}}_{j}\right)\right] \\
& =\sum_{k}^{\text {even }} F^{k} f_{k}
\end{aligned}
$$

Two-centre addition theorem: Ligand polarization(dynamic coupling) and energy transfer

lonic transitions hypersensitive to environment
B. R. Judd

Physics Department, The Johns Hopkins University, Baltimore, Maryland 21218 (Received 5 February 1979)

$$
\begin{aligned}
r_{j h}^{-1}= & \sum_{i, t} r_{j}^{l} r_{h L}^{t} R_{L}^{-l-t-1}[(2 l+2 t)!/(2 l)!(2 t)!]^{1 / 2} \\
& \times(-1)^{t}\left(\mathrm{C}_{j}^{(t)} \mathrm{C}_{n L}^{(t)}\right)^{(t+t)} \cdot \mathrm{C}_{L}^{(l+t)}
\end{aligned}
$$

Interaction between f electron and Ligand electron

Energy transfer

In this case there is an interaction between f electrons on two ions.
Dipole-dipole is $l=t=1$, so we have $1 / R^{3}$. Square gives $1 / R^{6}$.
Exchange interaction gives a different distance dependence.

$$
\begin{aligned}
& V=\frac{e^{2}}{4 \pi \epsilon_{0}} \sum_{k q}\left\langle r^{k}\right\rangle C_{q}^{(k)}\left(\theta_{e}, \phi_{e}\right) \frac{1}{r_{L}^{k+1}} C_{-q}^{(k)}\left(\theta_{L}, \phi_{L}\right)(-1)^{q} \\
& =\sum_{k=0}^{\infty} \frac{r_{k}^{k}}{r_{>}^{k+1}} \mathbf{C}^{(k)}\left(\hat{\mathbf{r}}_{1}\right) \cdot \mathbf{C}^{(k)}\left(\hat{\mathbf{r}}_{2}\right) \\
& =\sum_{k=0}^{\infty} \frac{r_{c}^{k}}{r_{>}^{k+1}} \sum_{q=-k}^{+k} C_{q}^{(k)}\left(\hat{\mathbf{r}}_{1}\right) C_{-q}^{(k)}\left(\hat{r}_{2}\right)(-1)^{q} . \\
& =\sum_{k q}\left[\frac{e^{2}}{4 \pi \epsilon_{0}}\left\langle r^{k}\right\rangle \frac{1}{r_{L}^{k+1}} C_{-q}^{(k)}\left(\theta_{L}, \phi_{L}\right)(-1)^{q}\right]\left[C_{q}^{(k)}\left(\theta_{e}, \phi_{e}\right)\right] \\
& =\sum_{k q} B_{q}^{k} C_{q}^{(k)} \text {. } \\
& r_{e} \\
& C_{0}^{(2)}=\sqrt{\frac{1}{4}}\left(3 z^{2}-r^{2}\right) / r^{2}=1, \\
& r_{L}=3 \AA=3 \times 10^{-10} \mathrm{~m} \text {, } \\
& \left\langle r^{2}\right\rangle=0.2 \AA=0.2 \times 10^{-20} \mathrm{~m}^{2} \text {. } \\
& \mathrm{C}^{2}{ }_{0}(r) \\
& B_{0}^{2}=\frac{e^{2}}{4 \pi \epsilon_{0}} \times \frac{1}{r_{L}^{3}} C_{0}^{(2)}(0,0)(-1)^{0}=\frac{\left(1.6 \times 10^{-19}\right)^{2}}{4 \pi \times 8.85 \times 10^{-12}} \times \frac{0.2 \times 10^{-20}}{\left(3 \times 10^{-10}\right)^{3}}=1.7 \times 10^{-20} \mathrm{~J} .
\end{aligned}
$$

We can convert to eV by dividing by $1.6 \times 10^{-19} \mathrm{C}$, and multiply by 8066 to convert to cm^{-1}. So B_{0}^{2} is 0.11 eV , or $860 \mathrm{~cm}^{-1}$.

"Crystal Field" $\sum_{k, q} B_{q}^{k} C_{q}^{(k)}$

[Diagrams use p orbitals for simplicity.]

All increase energy of z orbital more than x, y

Orbital energies or Hamiltonian matrix \leftrightarrow crystal-field parameters

Do the "Ligand Field" Parameters in Lanthanides

Represent Weak Covalent Bonding?

C.K. Jorgensen, R. Pappalardo, H.H. Schmidtke, J. Chem. Phys. 1963

Abstract: Instead of explaining the seven different f-orbital energies or five different d-orbital energies by parameters $A_{n m}\left\langle r_{n}\right\rangle$ of the electrostatic ligand field model, we propose to classify the energy levels according to the actual one-electron energies and to interpret these quantities by the weak effects of σ antibonding on the partly filled shell. Calculations of the relative angular dependence of such effects are made in a simple model and compared with experimental data for nine- and eight-coordinated lanthanide compounds The agreement is judged to be much more satisfactory than when the electrostatic model is applied, and the number of

Covalency freely chosen parameters is much smaller.

Rotations and the Superposition Model

Electrostatic model: $\quad B_{q}^{k}=\frac{e^{2}}{4 \pi \epsilon_{0}}\left\langle r^{k}\right\rangle \sum_{L} \frac{1}{r_{L}^{k+1}} C_{-q}^{(k)}\left(\theta_{L}, \phi_{L}\right)(-1)^{q}$
Rotation matrix is related to the spherical tensors:

$$
D_{q^{\prime} 0}^{(j)}(\alpha=\phi, \beta=\theta, \gamma=0)=(-1)^{q^{\prime}} C_{-q^{\prime}}^{(K)}(\theta, \phi)
$$

Rotate from Z and change the distance to build up CF in terms of single ligand CF:

$$
B_{q}^{k}=\bar{B}_{k}\left(R_{0}\right) \sum_{L} C_{-q}^{(k)}\left(\theta_{L}, \phi_{L}\right)(-1)^{q}\left(\frac{R_{0}}{R_{L}}\right)^{t_{k}}
$$

$$
B_{0}^{k}\left(R_{L}\right) \equiv \bar{B}_{k}\left(R_{L}\right)
$$

Table A.1. The Wigner rotation matrices $D_{m^{\prime}, m}^{1}(\alpha, \beta, \gamma)$.

		c	m
m^{\prime}	1	0	-1
1	$\frac{1+\cos \beta}{2} e^{-i(\alpha+\gamma)}$	$-\frac{1}{\sqrt{2}} \sin \beta e^{-i \alpha}$	$\frac{1-\cos \beta}{2} e^{-i(\alpha-\gamma)}$
0	$\frac{1}{\sqrt{2}} \sin \beta e^{-i \gamma}$	$\cos \beta$	$-\frac{1}{\sqrt{2}} \sin \beta e^{i \gamma}$
-1	$\frac{1-\cos \beta}{2} e^{i(\alpha-\gamma)}$	$\frac{1}{\sqrt{2}} \sin \beta e^{i \alpha}$	$\frac{1+\cos \beta}{2} e^{i(\alpha+\gamma)}$

k	q	$C_{q}^{(k)}(x, y, z)$	$C_{q}^{(k)}(\theta, \phi)$
0	0	1	1
1	0	z / r	$\cos \theta$
1	± 1	$\mp \sqrt{\frac{1}{2}}(x \pm i y) / r$	$\mp \sqrt{\frac{1}{2}} \sin \theta e^{ \pm i \phi}$

Relating ab-initio and crystal-field calculations

- Modern quantum-chemistry calculations for rare-earth materials:
- DFT calculation using VASP.
- $4 f$ energies (without spin-orbit) using AIMP embedded cluster approach
- [Seijo et al J. Chem. Phys. 114, 118 (2001).]
- SA-CASSCF calculation using MOLCAS.
- Use calculations for Ce^{3+} to estimate parameters for the series.
- For high symmetry we can just fit the energy levels of the ab-initio calculation.
- Not possible in low symmetries such as D_{2} (YAG), C_{1} (YSO)
- Need to relate the matrices.
- Project the Hamiltonian into the model space. (Hurtubise and Freed, Adv. Chem. Phys. 83, 465, 1993).

Relate $\mathrm{H}_{\text {eff }}$ to full H

Use a subset of energies and eigenvectors from ab-initio calculation:

$$
\begin{array}{ll}
H_{\text {eff }}^{N H}=V_{p} E_{p} V_{p}^{-1} & \text { (non-Hermitian) ['p' is the small, 'projected' matrix] } \\
\left.\mathbf{V}_{k}=(\mathbf{V p ~ V p})^{+}\right)^{-1 / 2} \mathbf{V p} & \text { (orthonormal) } \\
H_{\text {eff }}=V_{k} E p V_{k}^{-1} & \text { (Hermitian) }
\end{array}
$$

Can Solve: $\quad H_{\text {eff }}=\boldsymbol{\Sigma}_{\alpha} P_{\alpha} \boldsymbol{T}_{\alpha} \quad$ for parameters P_{α}

Reid MF., Duan CK. and Zhou HW. (2009) Crystal-field parameters from ab initio

Example: LiYF $: \mathrm{Ce}^{3+}$

A Theoretical Study on the Structural and Energy Spectral Properties of Ce^{3+} Ions Doped in Various Fluoride Compounds
Jun Wen, ${ }^{\dagger}$ Lixin Ning, ${ }^{\ddagger}$ Chang-Kui Duan, ${ }^{*}{ }^{\dagger}$ Yonghu Chen, ${ }^{\dagger}$ Yongfan Zhang, ${ }^{8}$ and Min Yin ${ }^{\dagger}$

LiYF_{4}

DFT calculation using VASP.
$4 f$ energies (without spin-orbit) using AIMP embedded cluster approach
[Seijo et al J. Chem. Phys. 114, 118 (2001).] SA-CASSCF calculation using MOLCAS.

Temperature dependent infrared absorption, crystal-field and intensity analysis of Ce^{3+} doped LiYF_{4}

Jon-Paul R. Wells ${ }^{\mathrm{a}, \mathrm{b}, *}$, S. P. Horvath ${ }^{\mathrm{a}}$, Michael F. Reid ${ }^{\mathrm{a}, \mathrm{c}}$
Optical Materials, 47, 33 (2015)

Table 1: Experimental, fitted, and ab-initio [21] energy levels $\left(\mathrm{cm}^{-1} \pm 0.1\right)$, ground state g-values for Ce^{3+} in LiYF_{4}.

State	Experiment	Fitted	Ab-initio	
$\mathrm{Z}_{1} \gamma_{7,8}$	0.0	1.5	0	
$\mathrm{Z}_{2} \gamma_{5,6}$	216	213.8	247	
$\mathrm{Z}_{3} \gamma_{7,8}$	-	414.4	481	
$\mathrm{Y}_{1} \gamma_{5,6}$	2216.1	2215.5	2214	
$\mathrm{Y}_{2} \gamma_{7,8}$	2312.8	2312.1	2255	
$\mathrm{Y}_{3} \gamma_{5,6}$	2428.8	2430.1	2409	
$\mathrm{Y}_{4} \gamma_{7,8}$	3157.8	3158.6	3016	
$g_{\\|}$	2.765	2.751		
g_{\perp}	1.473	1.514		

Table 2: Fitted and ab-initio [21] spin-orbit and S_{4} symmetry crystal-field parameters $\left(\mathrm{cm}^{-1}\right)$ for Ce^{3+} in LiYF_{4}.

Parameter	Fitted	Ab-initio
ζ	626	-
B_{0}^{2}	298	310
B_{0}^{4}	-1328	-1104
B_{4}^{4}	-1282	-1418
B_{0}^{6}	-192	-70
B_{4}^{6}	-1743	-1140
$B_{4}^{6^{\prime}}$	693	237

Note use of magnetic splittings in crystal-field fit. We now expand on this idea.

Transition Intensities

- Electric Dipole, Magnetic Dipole, ...
- ED between $4 \mathrm{f}^{\mathrm{N}}$ and $4 \mathrm{f}^{\mathrm{N}-1} 5 \mathrm{~d}$ can be calculated directly
- But require modelling of vibronic bands.
- ED within $4 f^{N}$ are parity forbidden.
- Construct Effective ED operator that accounts for mixing of configurations of opposite parity on ion or ligand.
- First detailed treatment: Judd, Ofelt, 1962.

Effective Electric Dipole Operator

$$
D_{\mathrm{eff}, q}=D_{q}^{(1)}+D_{q}^{(1)} \sum_{\beta \notin \mathrm{M}} \frac{|\beta\rangle\langle\beta| V}{E_{0}-E_{\beta}^{(0)}}+\sum_{\beta \notin \mathrm{M}} \frac{V|\beta\rangle\langle\beta|}{E_{0}-E_{\beta}^{(0)}} D_{q}^{(1)}+\ldots
$$

If all denominators are the same then the sum over $|\beta\rangle\langle\beta|$ is 1 . Couple the operators:

$$
T_{\ell}^{(\lambda)}=\sum_{q, t, p} D_{q}^{(1)} V_{p}^{(t)}\langle 1 q, t p \mid \lambda \ell\rangle
$$

Standardish parametrization. $\lambda=2,4,6, t=\lambda \pm 1, \lambda$

$$
D_{\mathrm{eff}, q}=\sum_{\lambda, t, p} A_{t p}^{\lambda} U_{p+q}^{(\lambda)}(-1)^{q}\langle\lambda(p+q), 1-q \mid t p\rangle
$$

Dipole strength

$$
\left.S_{F I, q}^{\operatorname{ED}}=\sum_{i} \sum_{f} e^{2}\left|\langle F f| D_{q}^{(1)}\right| I i\right\rangle\left.\right|^{2}
$$

Oscillator strength
$f_{F I, q}^{\mathrm{ED}}=\frac{2 m \omega}{\hbar e^{2}} \frac{\chi_{\mathrm{L}}}{n} \frac{1}{g_{I}} S_{F I, q}^{\mathrm{ED}}$

Einstein A coefficients ($1 / \tau$)

$$
A_{F I, q}^{\mathrm{ED}}=\frac{1}{4 \pi \epsilon_{0}} \frac{4 \omega^{3}}{\hbar c^{3}} n \chi_{\mathrm{L}} \frac{1}{g_{I}} S_{F I, q}^{\mathrm{ED}}
$$

Multiplet-Multiplet transitions

- Judd 1962

- For solutions and glasses at room temperature.
- Sum over all states in a multiplet and all polarizations.
- Reduces to three-parameter linear fit.

- Ω_{λ} parameters with $\lambda=2,4,6$
- 1000s of citations!

$$
\begin{aligned}
\bar{S}_{\alpha_{F} J_{F}, \alpha_{I} J_{I}}^{\mathrm{ED}} & =\frac{1}{3} e^{2} \sum_{\lambda} \Omega_{\lambda}\left\langle\alpha_{F} J_{F}\left\|\mathbf{U}^{(\lambda)}\right\| \alpha_{I} J_{I}\right\rangle^{2} \\
\Omega_{\lambda} & =\sum_{t, p} \frac{1}{2 \lambda+1}\left|A_{t p}^{\lambda}\right|^{2}
\end{aligned}
$$

Reminiscencies of a quenched luminescence investigatory

George Blasse

Journal of Luminescence 100 (2002) 65-67

Hypersensitivity: The emission of Eu^{3+} consists of an orange allowed magnetic-dipole transition $\left({ }^{5} \mathrm{D}_{0}-{ }^{7} \mathrm{~F}_{1}\right)$, a red parity-forbidden electric-dipole (ED) transition $\left({ }^{5} \mathrm{D}_{0}-{ }^{7} \mathrm{~F}_{2}\right)$, and further infrared ED transitions. For application, the emission should consist of as much ${ }^{5} \mathrm{D}_{0}{ }^{-}{ }^{7} \mathrm{~F}_{2}$ emissions as possible. This requires Eu^{3+} to occupy a site without inversion symmetry. This, however, in-
 duces also the infrared emission. Fortunately, the rare-earth transitions with $\Delta J=2$ are hypersensitive to the surroundings, i.e. a small deviation from inversion symmetry induces strong red emission whereas the infrared emission is still weak. By comparing many systems I found that a certain amount of covalency is a condition for this hypersensitivity. Later calculations by others confirmed this, but to me they are not transparent. It remains striking that the high quality of colour displays like in TV is due to this hypersensitivity effect.

Quantum Information Applications?

$|\psi\rangle=\cos (\theta / 2)|0\rangle+\mathrm{e}^{i \phi} \sin (\theta / 2)|1\rangle$

Spin Echoes* \dagger

E. L. Hahn \ddagger

Physics Department, University of Illinois, Urbana, Illinois (Received May 22, 1950)

Fig. 11. Free induction signals for protons in paraffin. The echo lasts for $\sim 1.4 \times 10^{-5} \mathrm{sec}$. The r-f pulses, about $25 \mu \mathrm{sec}$. wide, cause some blocking of the i.f. amplifier. The echo envelope decay time is also of the order of the single echo lifetime.

Spin Echo: Wikipedia

Modern NMR $600 \mathrm{MHz} / 14 \mathrm{~T}$
(N)MRI

Manjin Zhong, SUSTech, Shenzhen

Optically addressable nuclear spins in a solid with a six-hour coherence time

Manjin Zhong ${ }^{1}$, Morgan P. Hedges ${ }^{1,2}$, Rose L. Ahlefeldt ${ }^{1,3}$, John G. Bartholomew ${ }^{1}$, Sarah E. Beavan ${ }^{1,4}$, Sven M. Wittig ${ }^{1,5}$,
Jevon J. Longdell ${ }^{6}$ \& Matthew J. Sellars ${ }^{1}$
8 JANUARY 2015 | VOL 517 | NATURE | 177
${ }^{151} \mathrm{Eu}^{3+}: \mathrm{Y}_{2} \mathrm{SiO}_{5}$
ZEro First Order Zeeman

(Note that recent work has reordered the states relative to those shown on the left.)

Crystal-Field Calculation for ${ }^{167} \mathrm{Er}^{3+}:$ YSO Site 1

$$
H=H_{\mathrm{FI}}+H_{\mathrm{CF}}+H_{\mathrm{Z}}+H_{\mathrm{HF}}+H_{\mathrm{Q}} .
$$

- Use literature and new data for electronic energy levels, magnetic, and hyperfine splitting.
- Directional magnetic data is crucial to fixing orientation of CF Hamiltonian for low-symmetry sites.
- Separately calculate:
- Electronic energy levels
- Magnetic splitting for various field orientations
- Hyperfine splitting.
- Data (Effectively 95 data points)
- 35 Electronic energies
- 12 Ground-state hyperfine levels
- 12 Zeeman rotation points
- Raman heterodyne hyperfine data (15 MHz accuracy)
- 34 Parameters (similar to spin-Hamiltonian parameter number...)

Sểbastian Horvath et al. Phys. Rev. Lett. 123, 057401 (2019)

Extension to other ions: Zeeman spectroscopy of $\mathrm{Sm}^{3+}: \mathrm{Y}_{2} \mathrm{SiO}_{5}$
N.L. Jobbitt et al. J. Phys. Condensed Matter 34:325502 (2022)

Er³:YSO N.L. Jobbitt et al. Phys. Rev. B 104, 155121 (2021)

FIG. 2. Magnetic splittings of the site $1 \mathrm{Z}_{1} \rightarrow \mathrm{Y}_{1}$ transition for magnetic fields applied along the three crystallographic axes of $\mathrm{Y}_{2} \mathrm{SiO}_{5}$. The top, middle, and bottom panels shows $B\left\|D_{1}, B\right\| D_{2}$, and $B \| b$, respectively. The left panels show 4.2-K Zeeman absorption spectra at magnetic field strengths represented by the vertical lines in the right panels. The weak outer transitions are labeled with arrows to assist the reader. The right panels show the experimental splittings, represented by the circles, and the calculated splittings are represented by the red lines.

FIG. 3. Magnetic splittings of the site $2 \mathrm{Z}_{1} \rightarrow \mathrm{Y}_{1}$ transition for magnetic fields applied along the three crystallographic axes of $\mathrm{Y}_{2} \mathrm{SiO}_{5}$. The top, middle and bottom panels shows $B\left\|D_{1}, B\right\| D_{2}$, and $B \| b$, respectively. The left panels show 4.2-K Zeeman absorption spectra at magnetic field strengths represented by the vertical lines in the right panels. The weak outer transitions are labeled with arrows to assist the reader. The right panels show the experimental splittings, represented by the circles, and the calculated splittings are represented by the red lines.

Wavenumber $\left(\mathrm{cm}^{-1}\right)$

Site 1 ground state magnetic splitting

g value
max: 14

Er³: YSO Nick Jobbitt et al. Phys. Rev. B 104, 155121 (2021)

TABLE III. Fitted values for the free-ion, crystal-field and hyperfine parameters and their related uncertainties of site 1 and site 2 in $\mathrm{Er}^{3+}: \mathrm{Y}_{2} \mathrm{SiO}_{5}$. All values are in cm^{-1}. Parameters determined by Horvath et al. are also included for comparison [16,18].

Parameter	Site 1				Site 2		
	This study	Uncertainty	Ref. [16]	Ref. [18]	This study	Uncertainty	Ref. [18]
$E_{\text {avg }}$	35491.3	0.1	35503.5	-	35507.5	0.1	-
F^{2}	95805.7	1.0	96029.6	95346	96121.9	1.3	95721
F^{4}	67869.7	3.4	67670.6	68525	67722.4	4.5	68564
F^{6}	53148.2	2.5	53167.1	52804	53241.2	3.1	52999
ζ	2360.5	0.1	2362.9	2358	2362.3	0.1	2356
B_{0}^{2}	-479.6	6.1	-149.8	-563	389.0	3.7	354
B_{1}^{2}	$471.4+143.8 \mathrm{i}$	$2.9+3.0 \mathrm{i}$	$420.6+396.0 \mathrm{i}$	$558+280 \mathrm{i}$	-325.7-95.8i	$2.7+3.0 \mathrm{i}$	$498.6807+274 i$
B_{2}^{2}	$125.5-2.0 \mathrm{i}$	$2.8+2.3 \mathrm{i}$	$-228.5+27.6 \mathrm{i}$	143-121i	$-368.5+53.7 \mathrm{i}$	$1.8+2.0 \mathrm{i}$	$-75.8028+60 \mathrm{i}$
B_{0}^{4}	-640.6	31.3	1131.2	-125	17.2	15.5	226
B_{1}^{4}	$288.8+924.1 \mathrm{i}$	$7.2+25.3 \mathrm{i}$	$985.7+34.2 \mathrm{i}$	225-831i	$-378.7-519.5 \mathrm{i}$	$5.1+9.3 \mathrm{i}$	$-657.8381+593 \mathrm{i}$
B_{2}^{4}	$-273.9+320.9 \mathrm{i}$	$11.1+16.7 \mathrm{i}$	$296.8+145.0 \mathrm{i}$	-48-945i	-72.0-146.0i	$5.7+6.7 \mathrm{i}$	$335.7827+253 \mathrm{i}$
B_{3}^{4}	$-873.7-367.8 \mathrm{i}$	$20.7+9.7 \mathrm{i}$	-402.3-381.7i	-615-688i	$-890.8+570.4 \mathrm{i}$	$9.5+7.3 \mathrm{i}$	$-71.3262-46 \mathrm{i}$
B_{4}^{4}	$-600.8+1210.5 \mathrm{i}$	$23.7+9.2 \mathrm{i}$	$-282.3+1114.3 \mathrm{i}$	744-102i	$-198.7-567.9 \mathrm{i}$	$7.8+5.2 \mathrm{i}$	$-813.9654+64 i$
B_{0}^{6}	145.7	13.2	-263.2	-28	73.4	4.3	219
B_{1}^{6}	-105.9-329.0i	$2.9+4.0 \mathrm{i}$	$111.9+222.9 \mathrm{i}$	$49+199 \mathrm{i}$	$-37.5+49.9 \mathrm{i}$	$3.4+5.7 \mathrm{i}$	$-127+197 \mathrm{i}$
B_{2}^{6}	$-119.9+164.1 \mathrm{i}$	$7.7+8.8 i$	$124.7+195.9 \mathrm{i}$	120-107i	$135.5+60.6 \mathrm{i}$	$4.5+1.5 i$	$-36-47 \mathrm{i}$
B_{3}^{6}	$1.1+133.3 \mathrm{i}$	$6.7+4.5 \mathrm{i}$	$-97.9+139.7 \mathrm{i}$	195-55i	$-166.7+131.8 \mathrm{i}$	$2.6+4.0 \mathrm{i}$	17-108i
B_{4}^{6}	$-84.6+36.9 \mathrm{i}$	$5.0+4.5 \mathrm{i}$	$-93.7-145.0 \mathrm{i}$	$-287-161 i$	$227.2+47.6 \mathrm{i}$	$1.2+3.0 \mathrm{i}$	$-100+77 \mathrm{i}$
B_{5}^{6}	$75.5+6.9 \mathrm{i}$	$4.3+6.6 \mathrm{i}$	$13.9+109.5 \mathrm{i}$	$-117+162 i$	$119.5+64.3 \mathrm{i}$	$3.7+3.2 \mathrm{i}$	$-263+103 i$
B_{6}^{6}	$-48.5+118.0 \mathrm{i}$	$6.2+4.2 \mathrm{i}$	3.0-108.6i	$136+186 i$	$37.6-41.3 \mathrm{i}$	$3.5+2.8 \mathrm{i}$	12-26i
S^{2}	386.6	-	399.0	483.0	363.1	-	397.9
S^{4}	948.2	-	862.9	824.6	653.3	-	607.5
S^{6}	183.8	-	189.6	218.6	151.5	-	171.4
a_{l}	0.005306	0.000008	0.005466	0.0059	0.005389	0.000012	0.0069
a_{Q}	0.0554	0.0020	0.0716	0.0800	0.0240	0.0024	0.0808

Note that 34 parameters is the same as the number of spin Hamiltonian parameters for Z1 and Y1.
 g, A, Q tensors: $(6+6+5) * 2$

$\mathrm{Er}^{3+}: \mathrm{Y}_{2} \mathrm{SiO}_{5}$ predictions: Polarization Measurements

Polarization measurements for $1550 \mu \mathrm{~m}$ transitions
Y. Petit et al. Opt. Mater. X, 8, 100062 (2020)

Blue: $\mathrm{E} \| \mathrm{b} \rightarrow$ Magnetic dipole variation.
Red: $\mathrm{M} \| \mathrm{b} \rightarrow$ Electric dipole variation.
Y. Petit et al.

$\mathrm{Er}^{3+}: \mathrm{Y}_{2} \mathrm{SiO}_{5}$ Predictions: Polarization

Site 1 - magnetic dipole

- We cannot (yet) calculate electric-dipole moments in low symmetry, but can calculate magnetic dipole moments (same matrix elements as Zeeman).
- Our predictions for Site 1 have improved with more data.
- Site 2 is still out of phase...

Calculation or measurement?

- Interesting that all fits reproduce Zeeman splitting, but not dipole moments between states.

Site 2 - magnetic dipole

$\mathrm{Er}^{3+}: \mathrm{Y}_{2} \mathrm{SiO}_{5}$ predictions: high-field hyperfine

Hyperfine structure of Site $21.5 \mu \mathrm{~m}$ transition: 7 T along D_{1}.
Miloš Rančić et al. Nat. Phys., 4, 50-54 (2018)
Non-linear regime where spin-Hamiltonian approach breaks down.
Unlike Site 1, our Site 2 fit does not include Y_{1} hyperfine data - this is a prediction.

Splittings	${ }^{4} \mathrm{I}_{15 / 2} \mathrm{Z}_{1}$			${ }^{4} \mathrm{I}_{13 / 2} \mathrm{Y}_{1}$	
ΔE	This study	Ref. [5]		This study	
Ref. [5]					
$\Delta(1,2)$	897	995		928	
$\Delta(2,3)$	881	943		912	
$\Delta(3,4)$	865	898		895	
$\Delta(4,5)$	849	862		879	
$\Delta(5,6)$	833	831		963	
$\Delta(6,7)$	817	810		947	
$\Delta(7,8)$	801	796	831	935	

Other work by our group on $\mathrm{Y}_{2} \mathrm{SiO}_{5}$

$\mathrm{Ce}^{3+}: \mathrm{Y}_{2} \mathrm{SiO}_{5}$

Yashar Alizadeh et al. Opt. Mater., 117, 111114 (2021)
$\mathrm{Nd}^{3+}: \mathrm{Y}_{2} \mathrm{SiO}_{5}$

Calculated

Sagar Mothkuri et al.
Phys. Rev. B, 103, 104109 (2021)

The Journal of Physical Chemistry A, 2014, 118.

Spectroscopic Distinctions between Two Types of Ce^{3+} Ions in $\mathrm{X} 2-\mathrm{Y}_{2} \mathrm{SiO}_{5}$: A Theoretical Investigation

Jun Wen, ${ }^{*}{ }^{\dagger}$ Chang-Kui Duan, ${ }^{\dagger}$ Lixin Ning, ${ }^{*, \delta}$ Yucheng Huang, ${ }^{\S}$ Shengbao Zhan, ${ }^{\dagger}$ Jie Zhang, ${ }^{\dagger}$ and Min Yin ${ }^{\ddagger}$

Table 5. Calculated Principal Values of the g-Tensors for Ce^{3+} Ions in X2-YSO in Comparison with the Experimental Values for Ce^{3+} Ions in LSO

| | site $1(\mathrm{CN}=6)$ | | | site $2(\mathrm{CN}=7)$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| principal values | calcd | exptl a | | calcd $^{\text {calct }}{ }^{a}$ | |
| g_{x} | 0.015 | 0 | | 0.394 | 0.55 |
| g_{y} | 1.317 | 1.3 | | 1.743 | 1.69 |
| g_{z} | 2.297 | 2.3 | | 2.216 | 2.25 |

Figure 1. Schematic representations of local atomic structures around the two types of yttrium (Y1 and Y2) sites along with the unit cell of X2-YSO.

Ce^{3+} in X2－YSO

郝锐杰（Ruijie HAO），景伟国（Weiguo JING）＊
 Chang－Kui Duan
 USTC，Hefei，China

K=2 Spherical Harmonics - Potential

$$
C^{2}{ }_{0}(\mathbf{r})
$$

$C^{2}{ }_{1}(\mathbf{r})-C_{-1}^{2}(\mathbf{r})$

$$
C_{2}^{2}(\mathbf{r})+C_{-2}^{2}(\mathbf{r})
$$

$C^{2}{ }_{0}(\mathbf{r}) \sim 3 z^{2}-r^{2} \sim 3 \cos ^{2} \theta-1$, etc.

Potential acts on 4f orbitals:

Fitted and ab-initio parameters for the $k=2$ part of the crystal-field potential (Er ${ }^{3+}: Y S O$, site 1).

$H_{C F}=\sum_{k, q} B_{q}^{k} C_{q}^{(k)}$
Parameter fit for Er^{3+}
$B 20=-479.6$
B21 = 471.4+143.8i
$B 22=125.5-2.0 \mathrm{i}$

Ab-initio calculation for Ce^{3+}

B20 = -1162;
B21 = 362-198i;
$B 22=129+76 i ;$

Fitted and ab-initio parameters for the $k=2$ part of the crystal-field potential (Er ${ }^{3+}: Y S O$, site 2).

Ab-initio calculation

$C_{2}^{2}(\mathbf{r})+C_{-2}^{2}(\mathbf{r})$
CF Harmonics
$H_{C F}=\sum_{k, q} B_{q}^{k} C_{q}^{(k)}$

Parameter fit for Er^{3+}

$\mathrm{B} 20=389$
B21 $=-325.7-95.8 \mathrm{i}$
$B 22=-368.5+53.7 i$
Ab-initio calculation for Ce^{3+}

$$
\begin{aligned}
& \text { B20 }=925 ; \\
& \text { B21 }=-30-219 i \\
& \text { B22 }=-496+46 i
\end{aligned}
$$

Fitted and ab-initio parameters for the $k=2,4,6$ parts of the crystal-field potential ($\mathrm{Er}^{3+}: \mathrm{YSO}$, site 1).

Fitted and ab-initio parameters for the $k=2,4,6$ part of the crystal-field potential ($\mathrm{Er}^{3+}: \mathrm{YSO}$, site 2).

In Progress: Micro and nanocrystal $\mathrm{Y}_{2} \mathrm{SiO}_{5}$

- Basic laser spectroscopy of some ions, such as Ho^{3+} and Eu^{3+} are difficult at low concentrations.
- We can now make micro/nano crystals with higher concentration to do the preliminary work.
- Nano-crystals may also be useful for cavity enhancement.
- Lily Williams, Jamin Martin

YSO:Eu site selective emission

In Progress: Prediction of the hyperfine structure of ${ }^{151} \mathrm{Eu}^{3+}: \mathrm{Y}_{2} \mathrm{SiO}_{5}$

The $\mathrm{Sm}^{3+}: \mathrm{Y}_{2} \mathrm{SiO}_{5}$ parameters are scaled and fitted to predict the hyperfine structure of the ${ }^{7} \mathrm{~F}_{0}$ ground state of $\mathrm{Eu}^{3+}: \mathrm{Y}_{2} \mathrm{SiO}_{5}$ (Site 1)

Spin Hamiltonian: $\quad \mathscr{H}=\mu_{B} \mathbf{B} \cdot \mathbf{g} \cdot \mathbf{S}+\mathbf{I} \cdot \mathbf{A} \cdot \mathbf{S}+\mathbf{I} \cdot \mathbf{Q} \cdot \mathbf{I}-\mu_{n} g_{n} \mathbf{B} \cdot \mathbf{I}$
Contributions from

1. Electronic effects due to mixing of ${ }^{7} F_{2}$ with ${ }^{7} F_{0}$ by crystal field.
2. Direct interaction of lattice and magnetic field with nucleus.

See: Smith et al, Complete crystal-field calculation of Zeeman hyperfine splittings in europium.
Phys. Rev. B 105: 125141
Crystal-field and magnetic splitting

Crystal-field mixing

Electron-nuclear interactions

$$
\mathrm{I}=5 / 2
$$

In Progress: Predictions of the hyperfine structure of ${ }^{151} \mathrm{Eu}^{3+}: \mathrm{Y}_{2} \mathrm{SiO}_{5}$

The $\mathrm{Sm}^{3+}: \mathrm{Y}_{2} \mathrm{SiO}_{5}$ parameters were scaled to predict the hyperfine structure of the ${ }^{7} \mathrm{~F}_{0}$ ground state of $\mathrm{Eu}^{3+}: \mathrm{Y}_{2} \mathrm{SiO}_{5}$ (Site 1)

The experiment and prediction are for a magnetic field in the particula direction that gives the ZEFOZ point used in Zhong et al. Nature paper demonstrating six-hour coherence.

Contributions from:

1. Electronic effects due to mixing of ${ }^{7} F_{2}$ with ${ }^{7} F_{0}$ by crystal field.
2. Direct interaction of lattice and magnetic field with nucleus.

Conclusions

- Crystal-field modelling for several rare-earth ions: $\mathrm{Ce}^{3+}, \mathrm{Nd}^{3+}, \mathrm{Sm}^{3+}, \mathrm{Ho}^{3+}, \mathrm{Er}^{3+}$ in $\mathrm{Y}_{2} \mathrm{SiO}_{5}$ (YSO).
- Other groups include Yb^{3+} : Zhou et al. Inorganic Chemistry 59:13144 (2020).
- Due to the C_{1} symmetry, directional magnetic data is required to determine unique sets of parameters. [May still not be unique!]
- Parameters can be scaled between ions.
- Prediction of polarization and high-field hyperfine structure for $\mathrm{Er}^{3+}: \mathrm{Y}_{2} \mathrm{SiO}_{5}$.
- In progress:
- Comparison with ab-initio calculations.
- Micro and nanocrystals.
- Prediction of magnetic-hyperfine structure for $\mathrm{Eu}^{3+}: \mathrm{Y}_{2} \mathrm{SiO}_{5}$.
- Work on other ions.

Tutorials on Electronic Structure

www2.phys.canterbury.ac.nz/~mfr24/
Google: Mike Reid, Personal Home Page Canterbury

mike.reid@canterbury.ac.nz

UNIVERSITY OF
CANTERBURY

