### **Electronic Structure and Transition Intensities in Rare-Earth Materials**



ENERGY LEVELS OF THE +3 LANTHANIDES IN LaF,



Fig. 23. Energy Level Structure of Ln<sup>3+</sup>:LaF<sub>3</sub> Based on Computed Crystal-field Energies in the Range 0-50000 cm<sup>-1</sup>.



# 

#### **Michael F Reid**

School of Physical and Chemical Sciences *Te Kura Matū* University of Canterbury Christchurch, New Zealand

http://www.phys.canterbury.ac.nz



The Dodd-Walls Centre for Photonic and Quantum Technologies

January 2018 v01



#### Outline

- Background on rare-earth (lanthanide) ions.
- States and transitions
- Effective Hamiltonian for 4f<sup>N</sup>
- Some simple calculations of energy levels
- Transition intensities
- 4f<sup>N-1</sup>5d
- Ab-initio calculations



#### Gerhard Dieke Johns Hopkins 1950-1965





## 1960's Theory: Judd, Ofelt, Wybourne



#### Filling of orbitals









#### Lanthanide 3+ ground state: 5s<sup>2</sup> 5p<sup>6</sup> 4f<sup>N</sup> 5d<sup>0</sup>



#### Lanthanides: 4f<sup>N</sup>, 4f<sup>N-1</sup>5d, Excitons

#### • 4f<sup>N</sup>

- Sharp lines
- Long lifetimes
- So ideal for laser and phosphor applications



#### ■ 4f<sup>N-1</sup>5d

- Broad absorption bands from 4f<sup>N</sup>
- Useful for absorbing energy
- Short lifetimes useful in some applications, such as scintillators

#### Excitons

- Excited electron can become delocalized, giving an excitonic state.
- Charge Transfer Transitions
  - Ligand to lanthanide electron transfer





9

#### Transitions

- 4f<sup>N</sup> 4f<sup>N</sup>
  - No configuration shift
  - Sharp lines
- $4f^N 4f^N 5d$ 
  - Configuration shift
  - Broad bands
- Excitonic states  $\rightarrow 4f^N$ 
  - Large configuration shift
  - Very broad bands





## How do we proceed?

- Ab-initio (first principles) calculations
  - Well established in atoms
  - Hartree-Fock + perturbations
  - Now viable for lanthanide complexes but slow
- Effective Hamiltonians ("crystal field")
  - Requires parameter fitting
  - Relatively quick and easy, allowing rapid interpretation of spectra.
  - Can be related to ab-initio calculations.

## **Effective Hamiltonian Calculations**

- H  $|\Psi_i\rangle = E_i |\Psi_i\rangle$  (H is Hamiltonian)
- $H_{eff} | \phi_i \rangle = E_i | \phi_i \rangle$  ( $H_{eff}$  is Effective Hamiltonian)  $E_{Theory} E_{Expt}$   $(H) \rightarrow (H_{eff})$  $(H_{eff}) \rightarrow \sum_{\alpha} P_{\alpha}(M_{\alpha})$



All increase energy of z orbital more than x,y Orbital energies  $\leftrightarrow$  crystal-field parameters<sub>3</sub>



### **Effective Hamiltonian for 4f<sup>N</sup>**



#### **Correlation and other corrections**

$$+\alpha L(L+1) + \beta G(G_2) + \gamma G(R_7) + \sum_{i=2,3,4,6,7,8} T^i t_i$$
  
+ 
$$\sum_{h=0,2,4} M^h m_h + \sum_{k=2,4,6} P^k p_k$$



ENERGY LEVELS OF THE +3 LANTHANIDES IN LaF<sub>3</sub>

## **Calulating Matrix elements**

Wigner-Eckart Theorem

$$\langle \alpha JM | T_q^{(k)} | \alpha' J'M' \rangle = (-1)^{J-M} \begin{pmatrix} J & k & J' \\ -M & q & M' \end{pmatrix} \langle \alpha J | | T^{(k)} | | \alpha' J' \rangle$$

matrix element "geometrical" factors

"reduced" matrix element

- Selection Rules
  - M'+q = M
  - J k J' form a triangle:  $|J-J'| \le k \le J+J'$
- SLJM> states
  - More complex versions of WET.
  - Triangle rules for S S' L L' J J' and operator labels.

#### Ce<sup>3+</sup>: 4f<sup>1</sup> 5d<sup>1</sup>



Free-ion splitting is 2253 cm<sup>-1</sup> so  $\zeta$  = 644 cm<sup>-1</sup>

## Similarly for 5d<sup>1</sup>

#### Splitting of J=5/2 multiplet Magnetic field M = +5/2- Even spacing: M = +3/2M = +1/2 0.4 cm<sup>-1</sup> for 1T field M = -1/2M = -3/2M = -5/2 Crystal Field $H_{\rm cf} = \sum B_q^k C_q^{(k)}$ M=±1/2 E=258 J = 5/2M=±3/2 E=172 Uneven spacing - Example: $M = \pm 5/2 E = 0$ • $B_0^2 = 500 \text{ cm}^{-1}$ – More complex cases mix up M labels. 19

## **Superposition Model**

$$B_q^k = \sum_L \bar{B}_k(R_0)(-1)^q C_{-q}^{(k)}(\theta_L, \phi_L) \left(\frac{R_0}{R_L}\right)^{t_k}$$

$$C_0^{(2)}(x,y,z) = \frac{1}{r^2}\sqrt{\frac{1}{4}}(3z^2 - r^2)$$





### **Pr<sup>3+</sup> : 4f<sup>2</sup> Coulomb + Spin-orbit**

$$E({}^{3}H_{J}) = -0.0906F^{2} - 0.0328F^{4} + 0.0162F^{6} = -7359 \text{ cm}^{-1},$$
  

$$E({}^{3}F_{J}) = -0.0239F^{2} - 0.0163F^{4} - 0.0209F^{6} = -3155 \text{ cm}^{-1},$$
  

$$E({}^{1}G) = -0.01128F^{2} + 0.1221F^{4} + 0.0205F^{6} = -1644 \text{ cm}^{-1},$$

 $E({}^{1}G_{4}) = -0.1128F^{2} + 0.1031F^{4} + 0.0285F^{6} = -1641 \text{ cm}^{-1}.$ 



#### Tm<sup>3+</sup>: 4f<sup>12</sup>

#### Spin-orbit much larger and matrix elements change sign.





## **Transition Intensities**

- Electric Dipole, Magnetic Dipole, ...
- ED between 4f<sup>N</sup> and 4f<sup>N-1</sup>5d can be calculated directly
  - But require modelling of vibronic bands.
- ED within 4f<sup>N</sup> are parity forbidden.
  - Construct Effective ED operator that accounts for mixing of configurations of opposite parity on ion or ligand.
  - First detailed treatment: Judd, Ofelt, 1962.

## **Effective Electric Dipole Operator**

$$D_{\text{eff},q} = D_q^{(1)} + D_q^{(1)} \sum_{\beta \notin \mathcal{M}} \frac{|\beta\rangle \langle \beta| V}{E_0 - E_\beta^{(0)}} + \sum_{\beta \notin \mathcal{M}} \frac{V|\beta\rangle \langle \beta|}{E_0 - E_\beta^{(0)}} D_q^{(1)} + \dots$$

Can derive a parametrization.  $\lambda=2,4,6, t=\lambda\pm1, \lambda$  $D_{\text{eff},q} = \sum_{\lambda,t,p} A_{tp}^{\lambda} U_{p+q}^{(\lambda)} (-1)^q \langle \lambda(p+q), 1-q|tp \rangle$ 

**Dipole strength** 

$$S_{FI,q}^{\text{ED}} = \sum_{i} \sum_{f} e^{2} \left| \langle Ff | D_{q}^{(1)} | Ii \rangle \right|^{2}$$

Oscillator strength

Einstein A coefficients  $(1/\tau)$ 

$$f_{FI,q}^{\rm ED} = \frac{2m\omega}{\hbar e^2} \frac{\chi_{\rm L}}{n} \frac{1}{g_I} S_{FI,q}^{\rm ED}$$

$$A_{FI,q}^{\rm ED} = \frac{1}{4\pi\epsilon_0} \frac{4\omega^3}{\hbar c^3} n\chi_{\rm L} \frac{1}{g_I} S_{FI,q}^{\rm ED}$$



## **Multiplet-Multiplet transitions**

- Judd 1962
  - For solutions and glasses at room temperature.
  - Sum over all states in a multiplet and all polarizations.
  - Reduces to three-parameter *linear* fit.
  - $\Omega_{\lambda}$  parameters with  $\lambda$ =2,4,6
  - Over 3000 citations!

$$\bar{S}_{\alpha_F J_F, \alpha_I J_I}^{\text{ED}} = \frac{1}{3} e^2 \sum_{\lambda} \Omega_\lambda \langle \alpha_F J_F \| \mathbf{U}^{(\lambda)} \| \alpha_I J_I \rangle^2$$
$$\Omega_\lambda = \sum_{t, p} \frac{1}{2\lambda + 1} \left| A_{tp}^\lambda \right|^2$$



Eu<sup>3+</sup>:  ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$  Emission



### Eliminate options: Pr-Yb downconversion

Linda Aarts , Spectroscopy Letters, 43:373-381, 2010



TABLE 1 Reduced Matrix Elements  $(U^{(t)})^2$  for Transition Starting from the  $Pr^{3+1}G_4$  Level

| Transition                                 | $(U^{(2)})^2$ | $(U^{(4)})^2$ | ( <i>U</i> <sup>(6)</sup> ) <sup>2</sup> |
|--------------------------------------------|---------------|---------------|------------------------------------------|
| $\overline{{}^1G_4 \rightarrow {}^3H_4}$   | 0.00141       | 0.00635       | 0.02206                                  |
| ${}^{1}G_{4} \rightarrow {}^{3}H_{5}$      | 0.03739       | 0.09615       | 0.41314                                  |
| $^{1}G_{4} \rightarrow {}^{3}H_{6}$        | 0.25226       | 0.25337       | 0.23683                                  |
| $1_{G_4} \rightarrow \frac{3}{F_2}$        | 0.00004       | 0.01580       | 0.00587                                  |
| ${}^1G_4 \rightarrow {}^3F_3$              | 0.00381       | 0.00531       | 0.05173                                  |
| ${}^1G_4 \rightarrow {}^3F_4$              | 0.07819       | 0.14271       | 0.34419                                  |
| Sum                                        | 0.37310       | 0.51968       | 1.07382                                  |
| Percentage $({}^1G_4 \rightarrow {}^3H_4)$ | 0.38          | 1.2           | 2.1                                      |

The percentages in the bottom row give the  $(U^{(t)})^2$  strength for the  ${}^{1}G_4 \rightarrow {}^{3}H_4$  transitions relative to the sum of all  $(U^{(t)})^2$  values for a given value of *t*.

 ${}^{1}G_{4} \rightarrow {}^{3}H_{4}$  can never be strong...



#### Understanding the energy levels: 4f<sup>N-1</sup>5d



40 x 4f (20,000 vs 500)

#### Conduction Band, Free Electrons, Excitons





### CaF<sub>2</sub> (cubic sites)

 $Ce^{3+}: 4f^1 \rightarrow 5d^1$ 

#### $Pr^{3+}: 4f^2 \rightarrow 4f^15d^1$

#### $Nd^{3+}: 4f^3 \rightarrow 4f^25d^1$

## **First-Principles Calculations**

- Relativistic ab-initio calculations are now possible for these systems.
- Ogasawara et al.
   J. Solid State Chem. 178, 412 (2005).
  - Calculations for entire series. Some inaccuracies.
- Seijo et al.

J. Chem. Phys. 125, 074511 (2006)

 Very accurate and detailed calculations for particular ions, including potential surfaces.





SrCl<sub>2</sub>:Yb<sup>2+</sup>

Sánchez-Sanz et al. J. Chem. Phys. 133, 114509 2010

Some of our recent work is on extracting parameters from these calculations.



## Conclusion

- Effective Hamiltonian for 4f<sup>N</sup>
- Examples of energy level calculations
- Transition intensities
- 4f<sup>N-1</sup>5d
- Ab-initio calculations
- Further information and *exercises*:

http://www2.phys.canterbury.ac.nz/~mfr24/ http://www.phys.canterbury.ac.nz/people/reid.shtml

Email: <u>mike.reid@canterbury.ac.nz</u>





