Can statistical entropy measures be used to
quantify mixing in the Antarctic atmosphere?
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Introduction

“Climate is what we expect, weather is what we get.” - Mark Twain

Although there have been significant improvements in weather forecasting since this statement in the 19t century, it is
essentially still valid today. The source of the underlying problem now has a name: complexity. The large number of factors
that have an influence on the dynamics of the atmosphere, and their interdependence, can lead to almost random changes
in these dynamics, making predictions very difficult, or even impossible. One of the main sources of complexity within the
atmosphere is mixing. Large fluctuations in chemical concentrations of trace gases (gases that can only be found in
relatively low quantities) can be observed at the boundary between distinct regions in the atmosphere, and dynamical
variations in the boundary-regions can cause sudden mixing of previously separated air masses.

The Antarctic polar-vortex is a strong barrier, separating the cold polar winter air from warmer mid-latitude air. Its
intensification in austral springtime severely restricts meridional (north-south) mixing and ultimately contributes to the
Antarctic Ozone Hole. This is not the case in the northern hemisphere, as the polar-vortex is weaker and allows more

mixing with warmer, ozone-laden air across its borders. Entropy measures are examined to determine whether they can be
used to quantify the presence and intensity of complicated mixing processes occurring at the polar-vortex boundaries. The
present study considers sample entropy and Rényi entropy, which are both measures of the complexity of the underlying
distribution of data.

We aim to use these measures to understand mixing of chemical constituents in the atmosphere and particularly the
Antarctic atmosphere. Using artificial data, we determine how to use these measures optimally. Application of entropy
measures to tracers (chemically inert species), simulated using the chemistry-climate-model SOCOL (which runs on the
University of Canterbury Super Computer) show clear patterns that have been identified by previous studies which have
examined mixing. Our method has the significant benefit that it is data driven and requires considerably less computational
effort than previous studies. Application of the same entropy measures to observations made by the MLS instrument onboard
the Aura satellite show qualitatively similar structures to those determined from SOCOL data.

Sample entropy

a sequence of data pomts is within a certain

ge r for m steps. This tolerance r is usually measured in units of

the standard deviation (STD) of the time-series. Hence, sample entropy

depends on the length of the data series N, the length m of sequences to be
compared and the tolerance range r specified.

Climatological datasets generally display regularly varying patterns on some
time-scale (e.g. annual variations are common) and will be affected by noise.
Using artificial time-series, the sensitivity (meaning its ability to distinguish
between different datasets) of sample entropy on such signals was tested, in
order to determine the optimal set of parameters N, m and r.

Figure 1 and 2 show the dependence of sample entropy on data length N for
different types of artificial signals (e.g. white noise, red noise, white noise with
superimposed sine waves of period 6, 63 and 314 data points, red noise with
superimposed sine waves).
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reasonable differentlatlon can achleved even with 365 data points (e.g.
daily measurements for one year).

It is interesting to note that of different fr converge to
almost equal values of sample entropy. It follows, that sample entropy can not
be used to distinguish between signals of similar form but different frequency.
This is not unexpected, a signal which contains noise and has a certain period
is no more complex than the same quantity of data but with a different
periodicity - assuming we adequately sample both variations,

Figure 2 is the same diagram as Figure 1, but calculated using a different value
of r, showing that the absolute value of sample entropy and the relative
separation of the signals, and therefore its sensitivity to changes in the
*dynamics’ of the time series, strongly depend on r. Testing a wide range of
values, we conclude that r = 0.4 is optimal for our purposes since this value
produces the highest relative separation between the signals, compared to the
variability of the value of sample entropy.

Although sample entropy is defined for any m, we use the commonly chosen
value m = 2 (e.g. Lake et al., 2002).
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Figure 3: Global sample entropy (r=0.4, m=2) of 1980 methane data at approximately 28 km altitude.
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Renyi entropy

RE(a,b,N)=

While Rényi entropy is defined for any value of a, the

case of a = 2, which is also used in this study. The probabl
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Figure 4: Ozone profile of the southern hemisphere (left), corresponding PDF (right) and
resulting Rényi entropy for a southern hemisphere winter (A) and summer month (B).

, the sumi v
mld !atltude air Is relatlvely well mlxed due to the absen
a barrier. This change in the dynamics is reflected by a shift of
towards higher values (RE = 0.786).

Rényi entropy - application

We use SOCOL methane data for calculating the temporal evolution of Rényi
entropy in the southern hemisphere. We then compare our calculations with
previous studies which have attempted to quantify mixing in the Antarctic
stratosphere, in order to analyze the utility of Rényi entropy for this task. Rényi
entropy was calculated for a moving average of 10 days of data around a circle of
latitude. Figure 5 shows the results at a pressure of 10 mBar.
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Figure 5: Latitude over time plot of Rényi entropy of 1980 methane data

(SOCOL) in the southern hemisphere with zonal (east-west) wind

contours at 10 mBar (= 31km altitude).

Conclusion

We have studied the statistical entropy measures Sample entropy and Rényi
entropy and determined the most suitable parameters for our aim of using
them as measures of complexity and mixing in the Antarctic atmosphere. While
Sample entropy is most useful for quantifying the regularity and noisiness of
recurring patterns in time-series, Rényi entropy is well suited for analyzing
changes in the PDFs of all kinds of data, e.g. zonally and monthly averaged
tracer fields.

We applied both measures to tracers from runs of the chemistry-climate-model
SOCOL. We were able to identify patterns similar to those reported by several
other groups, who use very different measures for quantifying mixing. Rényi
entropy clearly shows the separation of high- and mid-latitude air masses in
the Antarctic atmosphere associated with the strong polar-vortex in winter and
early spring. Our method has the advantage that it is data driven and requires
significantly less computational effort than the ones used in other studies. The
validity of our approach was underlined by showing that qualitatively similar
patterns can be seen when using observational satellite data of a different
tracer.

We aim to improve our understanding of mixing in the Antarctic atmosphere by

applying Rényi entropy to further observational data of several tracers and
comparing them with more SOCOL model simulations.

Pressure in mBar
Pressure in mBar

0 40 -
Letiude (deg) Latitude (deg)

Figure 6: Altitude (350 mBar =~ 7.5 km; 10 mBar ~ 31 km) over latitude plot of

quarterly averaged monthly Rényi entropy with zonal wind contours (SOCOL, 1980).
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Finally, we apply Rényi entropy to a set of actual measurements of nitrous-
oxide (N,0). It is an atmospheric tracer with properties similar to meth.
should therefore display the same mixing patterns. The measurements,
in 2005 by the MLS instrument onboard the Aura satellite, lead to qualitatively
similar structures to those determined from SOCOL data.

Figure 8 also shows the band of high Rényi entropy separating intermediated
values at mid-latitudes from low values in Antarctic regions seen in Fic
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Figure 8: Latitude over time plot of Rényi entropy of 2005 MLS measurements of N,O

in the southern hemisphere at 850 K potential temperature (= 29.5 km altitude).



